Suppr超能文献

二次林德布拉德算符的十种方式

Tenfold Way for Quadratic Lindbladians.

作者信息

Lieu Simon, McGinley Max, Cooper Nigel R

机构信息

T.C.M. Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.

出版信息

Phys Rev Lett. 2020 Jan 31;124(4):040401. doi: 10.1103/PhysRevLett.124.040401.

Abstract

We uncover a topological classification applicable to open fermionic systems governed by a general class of Lindblad master equations. These "quadratic Lindbladians" can be captured by a non-Hermitian single-particle matrix which describes internal dynamics as well as system-environment coupling. We show that this matrix must belong to one of ten non-Hermitian Bernard-LeClair symmetry classes which reduce to the Altland-Zirnbauer classes in the closed limit. The Lindblad spectrum admits a topological classification, which we show results in gapless edge excitations with finite lifetimes. Unlike previous studies of purely Hamiltonian or purely dissipative evolution, these topological edge modes are unconnected to the form of the steady state. We provide one-dimensional examples where the addition of dissipators can either preserve or destroy the closed classification of a model, highlighting the sensitivity of topological properties to details of the system-environment coupling.

摘要

我们揭示了一种适用于由一类一般的林德布拉德主方程所支配的开放费米子系统的拓扑分类。这些“二次林德布拉德算符”可以由一个非厄米单粒子矩阵来描述,该矩阵描述了内部动力学以及系统与环境的耦合。我们表明,这个矩阵必定属于十个非厄米伯纳德 - 勒克莱尔对称类之一,在封闭极限下这些对称类会简化为阿尔特兰 - 齐恩鲍尔类。林德布拉德谱允许进行拓扑分类,我们证明这会导致具有有限寿命的无隙边缘激发。与之前对纯哈密顿演化或纯耗散演化的研究不同,这些拓扑边缘模式与稳态的形式无关。我们给出了一维示例,其中添加耗散项既可以保持也可以破坏模型的封闭分类,突出了拓扑性质对系统 - 环境耦合细节的敏感性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验