School of Biological Sciences, University of Auckland, Auckland, New Zealand.
Centre for Computational Evolution, School of Computer Science, University of Auckland, Auckland, New Zealand.
PLoS Comput Biol. 2020 Feb 14;16(2):e1006717. doi: 10.1371/journal.pcbi.1006717. eCollection 2020 Feb.
Transcription elongation can be modelled as a three step process, involving polymerase translocation, NTP binding, and nucleotide incorporation into the nascent mRNA. This cycle of events can be simulated at the single-molecule level as a continuous-time Markov process using parameters derived from single-molecule experiments. Previously developed models differ in the way they are parameterised, and in their incorporation of partial equilibrium approximations. We have formulated a hierarchical network comprised of 12 sequence-dependent transcription elongation models. The simplest model has two parameters and assumes that both translocation and NTP binding can be modelled as equilibrium processes. The most complex model has six parameters makes no partial equilibrium assumptions. We systematically compared the ability of these models to explain published force-velocity data, using approximate Bayesian computation. This analysis was performed using data for the RNA polymerase complexes of E. coli, S. cerevisiae and Bacteriophage T7. Our analysis indicates that the polymerases differ significantly in their translocation rates, with the rates in T7 pol being fast compared to E. coli RNAP and S. cerevisiae pol II. Different models are applicable in different cases. We also show that all three RNA polymerases have an energetic preference for the posttranslocated state over the pretranslocated state. A Bayesian inference and model selection framework, like the one presented in this publication, should be routinely applicable to the interrogation of single-molecule datasets.
转录延伸可以被建模为一个三步过程,包括聚合酶易位、NTP 结合以及核苷酸掺入新生 mRNA。这个循环事件可以在单分子水平上通过使用从单分子实验中得出的参数来模拟为连续时间马尔可夫过程。以前开发的模型在参数化方式和部分平衡近似的纳入方式上存在差异。我们提出了一个由 12 个依赖于序列的转录延伸模型组成的层次网络。最简单的模型有两个参数,并假设易位和 NTP 结合都可以被建模为平衡过程。最复杂的模型有六个参数,不做部分平衡假设。我们使用近似贝叶斯计算系统地比较了这些模型解释已发表的力-速度数据的能力。该分析是使用来自大肠杆菌、酿酒酵母和噬菌体 T7 的 RNA 聚合酶复合物的数据进行的。我们的分析表明,聚合酶在易位速率方面存在显著差异,T7 pol 的速率与大肠杆菌 RNA 聚合酶和酿酒酵母 pol II 相比非常快。不同的模型适用于不同的情况。我们还表明,所有三种 RNA 聚合酶都对后易位状态比对前易位状态具有能量偏好。像本出版物中提出的那样,贝叶斯推断和模型选择框架应该可以常规地应用于单分子数据集的查询。