Han Qinghua, Pan Minghai, Long Weijun, Liang Zhiheng, Shan Chenggang
College of Information Science and Engineering, Zaozhuang University, Zaozhuang 277160, China.
Ministry of Education Key Laboratory of Radar Imaging and Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
Sensors (Basel). 2020 Feb 12;20(4):981. doi: 10.3390/s20040981.
In this paper, a joint adaptive sampling interval and power allocation (JASIPA) scheme based on chance-constraint programming (CCP) is proposed for maneuvering target tracking (MTT) in a multiple opportunistic array radar (OAR) system. In order to conveniently predict the maneuvering target state of the next sampling instant, the best-fitting Gaussian (BFG) approximation is introduced and used to replace the multimodal prior target probability density function (PDF) at each time step. Since the mean and covariance of the BFG approximation can be computed by a recursive formula, we can utilize an existing Riccati-like recursion to accomplish effective resource allocation. The prior Cramér-Rao lower boundary (prior CRLB-like) is compared with the upper boundary of the desired tracking error range to determine the adaptive sampling interval, and the Bayesian CRLB-like (BCRLB-like) gives a criterion used for measuring power allocation. In addition, considering the randomness of target radar cross section (RCS), we adopt the CCP to package the deterministic resource management model, which minimizes the total transmitted power by effective resource allocation. Lastly, the stochastic simulation is embedded into a genetic algorithm (GA) to produce a hybrid intelligent optimization algorithm (HIOA) to solve the CCP optimization problem. Simulation results show that the global performance of the radar system can be improved effectively by the resource allocation scheme.
本文针对多机会阵列雷达(OAR)系统中的机动目标跟踪(MTT)问题,提出了一种基于机会约束规划(CCP)的联合自适应采样间隔与功率分配(JASIPA)方案。为了方便预测下一个采样时刻的机动目标状态,引入了最佳拟合高斯(BFG)近似,并用于在每个时间步替换多峰先验目标概率密度函数(PDF)。由于BFG近似的均值和协方差可以通过递归公式计算,因此我们可以利用现有的类似Riccati递归来完成有效的资源分配。将先验克拉美 - 罗下界(类先验CRLB)与期望跟踪误差范围的上界进行比较,以确定自适应采样间隔,而类贝叶斯CRLB(类BCRLB)给出了用于衡量功率分配的准则。此外,考虑到目标雷达散射截面积(RCS)的随机性,我们采用CCP对确定性资源管理模型进行封装,通过有效的资源分配使总发射功率最小化。最后,将随机模拟嵌入到遗传算法(GA)中,生成一种混合智能优化算法(HIOA)来求解CCP优化问题。仿真结果表明,该资源分配方案能够有效提高雷达系统的整体性能。