Suppr超能文献

一种基于子空间方法的无线传感器网络稀疏采样数据采集

A Subspace Approach to Sparse Sampling based Data Gathering in Wireless Sensor Networks.

作者信息

He Jingfei, Zhang Xiaoyue, Zhou Yatong, Maibvisira Miriam

机构信息

Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin 300401, China.

出版信息

Sensors (Basel). 2020 Feb 12;20(4):985. doi: 10.3390/s20040985.

Abstract

Data gathering is an essential concern in Wireless Sensor Networks (WSNs). This paper proposes an efficient data gathering method in clustered WSNs based on sparse sampling to reduce energy consumption and prolong the network lifetime. For data gathering scheme, we propose a method that can collect sparse sampled data in each time slot with a fixed percent of nodes remaining in sleep mode. For data reconstruction, a subspace approach is proposed to enforce an explicit low-rank constraint for data reconstruction from sparse sampled data. Subspace representing spatial distributions of the WSNs data can be estimated from previous reconstructed data. Incorporating total variation constraint, the proposed reconstruction method reconstructs current time slot data efficiently. The results of experiments indicate that the proposed method can reduce the energy consumption and prolong the network lifetime with satisfying recovery accuracy.

摘要

数据收集是无线传感器网络(WSN)中的一个重要问题。本文提出了一种基于稀疏采样的高效聚类WSN数据收集方法,以降低能耗并延长网络寿命。对于数据收集方案,我们提出了一种方法,该方法可以在每个时隙中收集稀疏采样数据,同时有固定百分比的节点保持睡眠模式。对于数据重建,提出了一种子空间方法,以对从稀疏采样数据进行数据重建强制执行显式低秩约束。可以从先前重建的数据中估计表示WSN数据空间分布的子空间。结合总变差约束,所提出的重建方法可以有效地重建当前时隙数据。实验结果表明,该方法能够在满足恢复精度的情况下降低能耗并延长网络寿命。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验