Suppr超能文献

通过非线性动力学的算子理论技术进行延伸范围的统计厄尔尼诺南方涛动预测。

Extended-range statistical ENSO prediction through operator-theoretic techniques for nonlinear dynamics.

机构信息

Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York, USA.

Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.

出版信息

Sci Rep. 2020 Feb 14;10(1):2636. doi: 10.1038/s41598-020-59128-7.

Abstract

Forecasting the El Niño-Southern Oscillation (ENSO) has been a subject of vigorous research due to the important role of the phenomenon in climate dynamics and its worldwide socioeconomic impacts. Over the past decades, numerous models for ENSO prediction have been developed, among which statistical models approximating ENSO evolution by linear dynamics have received significant attention owing to their simplicity and comparable forecast skill to first-principles models at short lead times. Yet, due to highly nonlinear and chaotic dynamics (particularly during ENSO initiation), such models have limited skill for longer-term forecasts beyond half a year. To resolve this limitation, here we employ a new nonparametric statistical approach based on analog forecasting, called kernel analog forecasting (KAF), which avoids assumptions on the underlying dynamics through the use of nonlinear kernel methods for machine learning and dimension reduction of high-dimensional datasets. Through a rigorous connection with Koopman operator theory for dynamical systems, KAF yields statistically optimal predictions of future ENSO states as conditional expectations, given noisy and potentially incomplete data at forecast initialization. Here, using industrial-era Indo-Pacific sea surface temperature (SST) as training data, the method is shown to successfully predict the Niño 3.4 index in a 1998-2017 verification period out to a 10-month lead, which corresponds to an increase of 3-8 months (depending on the decade) over a benchmark linear inverse model (LIM), while significantly improving upon the ENSO predictability "spring barrier". In particular, KAF successfully predicts the historic 2015/16 El Niño at initialization times as early as June 2015, which is comparable to the skill of current dynamical models. An analysis of a 1300-yr control integration of a comprehensive climate model (CCSM4) further demonstrates that the enhanced predictability afforded by KAF holds over potentially much longer leads, extending to 24 months versus 18 months in the benchmark LIM. Probabilistic forecasts for the occurrence of El Niño/La Niña events are also performed and assessed via information-theoretic metrics, showing an improvement of skill over LIM approaches, thus opening an avenue for environmental risk assessment relevant in a variety of contexts.

摘要

由于厄尔尼诺-南方涛动(ENSO)现象在气候动力及其对全球社会经济的影响方面的重要作用,对其进行预测一直是一个活跃的研究课题。在过去的几十年中,已经开发出了许多 ENSO 预测模型,其中通过线性动力学近似 ENSO 演变的统计模型因其简单性和在短期领先时间内与第一性原理模型相当的预测能力而受到了广泛关注。然而,由于高度非线性和混沌动力学(特别是在 ENSO 启动期间),此类模型在半年以上的长期预测方面的能力有限。为了解决这个限制,我们在这里采用了一种新的基于类比预测的非参数统计方法,称为核类比预测(KAF),该方法通过使用非线性核方法进行机器学习和高维数据集的降维,避免了对基础动力学的假设。通过与动力系统的 Koopman 算子理论的严格联系,KAF 给出了未来 ENSO 状态的统计最优预测,这些预测是作为条件期望得到的,给定了预测初始化时的嘈杂且可能不完整的数据。在这里,使用工业时代印度洋-太平洋海表温度(SST)作为训练数据,该方法成功地预测了 1998-2017 年验证期内的 Niño 3.4 指数,提前 10 个月,比基准线性逆模型(LIM)增加了 3-8 个月(取决于十年),同时大大提高了 ENSO 可预测性的“春季障碍”。特别是,KAF 成功地在 2015 年 6 月的早期预测初始化时间预测了历史上的 2015/16 厄尔尼诺事件,这与当前动力模型的预测能力相当。对综合气候模型(CCSM4)的 1300 年控制积分的分析进一步表明,KAF 提供的增强的可预测性在潜在的更长的时间范围内仍然有效,相对于基准 LIM 延长到 24 个月对 18 个月。还通过信息论指标对厄尔尼诺/拉尼娜事件发生的概率预测进行了分析和评估,显示出比 LIM 方法的技能提高,从而为各种情况下的环境风险评估开辟了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/202c/7224305/37aa81819402/41598_2020_59128_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验