Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Life Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China.
Environ Geochem Health. 2021 Apr;43(4):1599-1607. doi: 10.1007/s10653-020-00533-2. Epub 2020 Feb 14.
Hyperaccumulator plants are ideal models for investigating the regulatory mechanisms of plant metal homeostasis and environmental adaptation due to their notable traits of metal accumulation and tolerance. These traits may benefit either the biofortification of essential mineral nutrients or the phytoremediation of nonessential toxic metals. A common mechanism by which elevated expression of key genes involved in metal transport or chelation contributes to hyperaccumulation and hypertolerance was proposed mainly from studies examining two Brassicaceae hyperaccumulators, namely Arabidopsis halleri and Noccaea caerulescens (formerly Thlaspi caerulescens). Meanwhile, recent findings regarding systems outside the Brassicaceae hyperaccumulators indicated that functional enhancement of key genes might represent a strategy evolved by hyperaccumulator plants. This review provides a brief outline of metal hyperaccumulation in plants and highlights commonalities and differences among various hyperaccumulators.
超积累植物由于其金属积累和耐受的显著特性,成为研究植物金属内稳态和环境适应调节机制的理想模型。这些特性可能有利于必需矿物质营养的生物强化,也可能有利于非必需毒性金属的植物修复。主要通过研究两种十字花科超积累植物,即 A. halleri 和 N. caerulescens(以前称为 T. caerulescens),提出了一个涉及金属转运或螯合关键基因表达上调有助于超积累和超耐受的共同机制。同时,关于十字花科超积累植物以外系统的最新发现表明,关键基因的功能增强可能代表超积累植物进化的一种策略。本综述简要概述了植物中的金属超积累,并强调了各种超积累植物之间的共性和差异。