Suppr超能文献

锌在种子中的分配及种子内部情况:不同选择压力下不同种质中金属稳态的不同策略。

Zinc allocation to and within seeds: Different strategies of metal homeostasis in accessions under divergent selection pressure.

作者信息

Babst-Kostecka Alicja, Przybyłowicz Wojciech J, Seget Barbara, Mesjasz-Przybyłowicz Jolanta

机构信息

Department of Environmental Science The University of Arizona Tucson AZ USA.

Department of Ecology, W. Szafer Institute of Botany Polish Academy of Sciences Krakow Poland.

出版信息

Plant Environ Interact. 2020 Nov 30;1(3):207-220. doi: 10.1002/pei3.10032. eCollection 2020 Dec.

Abstract

Vegetative tissues of metal(loid)-hyperaccumulating plants are widely used to study plant metal homeostasis and adaptation to metalliferous soils, but little is known about these mechanisms in their seeds. We explored essential element allocation to seeds, a species that faces a particular trade-off between meeting nutrient requirements and minimizing toxicity risks.Combining advanced elemental mapping (micro-particle induced X-ray emission) with chemical analyses of plant and soil material, we investigated natural variation in Zn allocation to seeds from non-metalliferous and metalliferous locations. We also assessed the tissue-level distribution and concentration of other nutrients to identify possible disorders in seed homeostasis.Unexpectedly, the highest Zn concentration was found in seeds of a non-metalliferous lowland location, whereas concentrations were relatively low in all other seed samples-including metallicolous ones. The abundance of other nutrients in seeds was unaffected by metalliferous site conditions.Our findings depict contrasting strategies of Zn allocation to seeds: increased delivery at lowland non-metalliferous locations (a likely natural selection toward enhanced Zn-hyperaccumulation in vegetative tissues) versus limited translocation at metalliferous sites where external Zn concentrations are toxic for non-tolerant plants. Both strategies are worth exploring further to resolve metal homeostasis mechanisms and their effects on seed development and nutrition.

摘要

金属(类金属)超积累植物的营养组织被广泛用于研究植物的金属稳态以及对含金属土壤的适应性,但对于这些植物种子中的相关机制却知之甚少。我们研究了一种在满足营养需求和将毒性风险降至最低之间面临特殊权衡的植物——遏蓝菜种子中必需元素的分配情况。我们将先进的元素图谱分析(微粒子诱导X射线发射)与植物和土壤材料的化学分析相结合,研究了来自非含金属和含金属地点的遏蓝菜种子中锌分配的自然变异。我们还评估了其他养分在组织水平上的分布和浓度,以确定种子稳态中可能存在的紊乱情况。出乎意料的是,在一个非含金属的低地地点的种子中发现了最高的锌浓度,而在所有其他种子样本(包括含金属的样本)中锌浓度相对较低。种子中其他养分的含量不受含金属地点条件的影响。我们的研究结果描绘了遏蓝菜种子锌分配的两种截然不同的策略:在低地非含金属地点增加锌的输送(这可能是对营养组织中锌超积累增强的一种自然选择),而在外部锌浓度对非耐受植物有毒的含金属地点,锌的转运则受到限制。这两种策略都值得进一步探索,以解析金属稳态机制及其对种子发育和营养的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aad/10168052/b3795922b592/PEI3-1-207-g004.jpg

相似文献

1
Zinc allocation to and within seeds: Different strategies of metal homeostasis in accessions under divergent selection pressure.
Plant Environ Interact. 2020 Nov 30;1(3):207-220. doi: 10.1002/pei3.10032. eCollection 2020 Dec.
2
Metalliferous habitats and seed microbes affect the seed morphology and reproductive strategy of .
Plant Soil. 2022 Mar;472(1-2):175-192. doi: 10.1007/s11104-021-05203-5. Epub 2022 Jan 31.
5
Soil microbial community and abiotic soil properties influence Zn and Cd hyperaccumulation differently in Arabidopsis halleri.
Sci Total Environ. 2022 Jan 10;803:150006. doi: 10.1016/j.scitotenv.2021.150006. Epub 2021 Aug 30.
6
Elevated root nicotianamine concentrations are critical for Zn hyperaccumulation across diverse edaphic environments.
Plant Cell Environ. 2019 Jun;42(6):2003-2014. doi: 10.1111/pce.13541. Epub 2019 Mar 22.
7
Adaptation to high zinc depends on distinct mechanisms in metallicolous populations of Arabidopsis halleri.
New Phytol. 2018 Apr;218(1):269-282. doi: 10.1111/nph.14949. Epub 2018 Jan 2.
8
Competition for light induces metal accumulation in a metal hyperaccumulating plant.
Oecologia. 2021 Sep;197(1):157-165. doi: 10.1007/s00442-021-05001-x. Epub 2021 Aug 9.

本文引用的文献

1
Tansley Review No. 111: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species.
New Phytol. 2000 May;146(2):185-205. doi: 10.1046/j.1469-8137.2000.00630.x.
2
Evolution of the metal hyperaccumulation and hypertolerance traits.
Plant Cell Environ. 2020 Dec;43(12):2969-2986. doi: 10.1111/pce.13821. Epub 2020 Jul 19.
3
Zinc Hyperaccumulation in Plants: A Review.
Plants (Basel). 2020 Apr 29;9(5):562. doi: 10.3390/plants9050562.
4
Comparative understanding of metal hyperaccumulation in plants: a mini-review.
Environ Geochem Health. 2021 Apr;43(4):1599-1607. doi: 10.1007/s10653-020-00533-2. Epub 2020 Feb 14.
5
: a perennial model system for studying population differentiation and local adaptation.
AoB Plants. 2019 Nov 27;11(6):plz076. doi: 10.1093/aobpla/plz076. eCollection 2019 Dec.
7
Real-time whole-plant dynamics of heavy metal transport in and by gamma-ray imaging.
Plant Direct. 2019 Apr 23;3(4):e00131. doi: 10.1002/pld3.131. eCollection 2019 Apr.
8
Toxic Effects of Cd and Zn on the Photosynthetic Apparatus of the and Pseudo-Metallophytes.
Front Plant Sci. 2019 Jun 6;10:748. doi: 10.3389/fpls.2019.00748. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验