Suppr超能文献

海洋链霉菌(弗氏变种)ATCC19609 基因的生物信息学分析,重点是突变赋予对寡霉素 A 及其衍生物的抗性。

Bioinformatics analysis of genes of Streptomyces xinghaiensis (fradiae) ATCC 19609 with a focus on mutations conferring resistance to oligomycin A and its derivatives.

机构信息

Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, 119333 Moscow, Russia.

Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, 119333 Moscow, Russia.

出版信息

J Glob Antimicrob Resist. 2020 Sep;22:47-53. doi: 10.1016/j.jgar.2020.01.026. Epub 2020 Feb 12.

Abstract

OBJECTIVES

The aim of this study was to obtain Streptomyces xinghaiensis (fradiae) ATCC 19609 mutants resistant to oligomycin A and its derivatives and to identify the underlying mechanism of resistance. This study was based on the premise that S. xinghaiensis ATCC 19609 contains several oligomycin A biological targets, explaining why the strain remains supersensitive to oligomycin A despite all efforts to obtain resistant mutants using standard genetic methods.

METHODS

The method to obtain oligomycin A-resistant mutants was performed in two steps: first, mutants slightly resistant to an oligomycin A derivative with an attenuated effect were obtained; and second, oligomycin A-resistant mutants were obtained from those mutants obtained earlier. The genomes of the mutants were then sequenced and a bioinformatics analysis of the detected mutations was conducted.

RESULTS

Mutants with seven mutations were required to obtain oligomycin A-resistant mutant strains of S. xinghaiensis characterised by a level of resistance comparable with that of the model organism Streptomyces lividans. Five of these mutations caused amino acid substitutions in the well-known oligomycin A biological target, namely the F0F1-ATP synthase A subunit, and the others caused amino acid substitutions in unexplored biological targets, including RecB-like recombinase, type IV helicase, DNA ligase and single-domain response regulator.

CONCLUSION

A new oligomycin resistance mechanism involving a pathway that repairs double-strand breaks in DNA known as non-homologous end joining (NHEJ) was discovered.

摘要

目的

本研究旨在获得对寡霉素 A 及其衍生物具有抗性的海洋链霉菌(弗氏链霉菌)ATCC 19609 突变株,并鉴定其抗性的潜在机制。本研究基于以下前提:海洋链霉菌 ATCC 19609 含有几个寡霉素 A 生物靶标,这解释了为什么尽管使用标准遗传方法尽一切努力获得抗性突变体,该菌株仍对寡霉素 A 保持超敏。

方法

获得寡霉素 A 抗性突变体的方法分两步进行:首先,获得对作用减弱的寡霉素 A 衍生物略有抗性的突变体;其次,从先前获得的突变体中获得寡霉素 A 抗性突变体。然后对突变体的基因组进行测序,并对检测到的突变进行生物信息学分析。

结果

需要七个突变才能获得海洋链霉菌的寡霉素 A 抗性突变株,其抗性水平与模型生物链霉菌 lividans 相当。其中五个突变导致了众所周知的寡霉素 A 生物靶标 F0F1-ATP 合酶 A 亚基中的氨基酸取代,而其他突变导致了未探索的生物靶标中的氨基酸取代,包括 RecB 样重组酶、IV 型螺旋酶、DNA 连接酶和单结构域反应调节剂。

结论

发现了一种新的寡霉素抗性机制,涉及一种称为非同源末端连接(NHEJ)的修复 DNA 双链断裂的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验