Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raibareli Road, Lucknow 226014, Uttar Pradesh, India.
Int J Biol Macromol. 2020 May 15;151:204-211. doi: 10.1016/j.ijbiomac.2020.02.116. Epub 2020 Feb 14.
Metal ions like Cu and Zn have been shown to impact protein misfolding pathways in neurodegenerative proteinopathies like Alzheimer's and Parkinson's. Also, due to their strong interaction with Ubiquitin, they interfere in degradation of misfolded proteins by impairing the ubiquitin-proteasome system (UPS). In this work, we have studied the interaction of these metal ions with a small Ubiquitin like post-translation modifier SUMO1, which is known to work co-operatively with Ubiquitin to regulate UPS system. Between Cu and Zn, the former binds more strongly with SUMO1 as determined using fluorescence spectroscopy. SUMO1 aggregates, forming trimer and higher oligomers in presence of Cu ions which were characterized using gel electrophoresis, Bradford assay, and transmission electron microscopy. Chemical shift analysis using N/H based NMR spectroscopy revealed that SUMO1 retains its structural fold in its trimeric state. Cu induced paramagnetic quenching and Zn induced chemical shift perturbation of N-H cross-peaks were used to identify their respective binding sites in SUMO1. Binding sites so obtained were further validated with molecular dynamics studies. Our findings provide structural insights into the SUMO1-Cu/Zn interaction, and its impact on aggregation of SUMO1 which might affect its ability to modify functions of target proteins.
金属离子如铜(Cu)和锌(Zn)已被证明会影响神经退行性蛋白病变(如阿尔茨海默病和帕金森病)中的蛋白质错误折叠途径。此外,由于它们与泛素(Ubiquitin)的强烈相互作用,通过损害泛素-蛋白酶体系统(UPS),它们会干扰错误折叠蛋白质的降解。在这项工作中,我们研究了这些金属离子与一种小的泛素样翻译后修饰物 SUMO1 的相互作用,已知 SUMO1 与泛素协同作用以调节 UPS 系统。通过荧光光谱法确定,在 Cu 和 Zn 之间,前者与 SUMO1 的结合更强。在 Cu 离子存在下,SUMO1 聚集,形成三聚体和更高的寡聚物,这通过凝胶电泳、Bradford 测定法和透射电子显微镜进行了表征。使用基于 N/H 的 NMR 光谱的化学位移分析表明,SUMO1 在三聚体状态下保持其结构折叠。Cu 诱导的顺磁猝灭和 Zn 诱导的 N-H 交叉峰的化学位移扰动被用于鉴定它们在 SUMO1 中的各自结合位点。通过分子动力学研究进一步验证了所得结合位点。我们的研究结果提供了 SUMO1-Cu/Zn 相互作用的结构见解,以及其对 SUMO1 聚集的影响,这可能会影响其修饰靶蛋白功能的能力。