Suppr超能文献

重新思考脑损伤-行为推断中的因果关系和数据复杂性及其对损伤-行为建模的影响。

Rethinking causality and data complexity in brain lesion-behaviour inference and its implications for lesion-behaviour modelling.

作者信息

Sperber Christoph

机构信息

Centre of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.

出版信息

Cortex. 2020 May;126:49-62. doi: 10.1016/j.cortex.2020.01.004. Epub 2020 Jan 24.

Abstract

Modelling behavioural deficits based on structural lesion imaging is a popular approach to map functions in the human brain, and efforts to translationally apply lesion-behaviour modelling to predict post-stroke outcomes are on the rise. The high-dimensional complexity of lesion data, however, evokes challenges in both lesion behaviour mapping and post stroke outcome prediction. This paper aims to deepen the understanding of this complexity by reframing it from the perspective of causal and non-causal dependencies in the data, and by discussing what this complexity implies for different data modelling approaches. By means of theoretical discussion and empirical examination, several common strategies and views are challenged, and future research perspectives are outlined. A main conclusion is that lesion-behaviour inference is subject to a lesion-anatomical bias that cannot be overcome by using multivariate models or any other algorithm that is blind to causality behind relations in the data. This affects the validity of lesion behaviour mapping and might even wrongfully identify paradoxical effects of lesion-induced functional facilitation - but, as this paper argues, only to a minor degree. Thus, multivariate lesion-brain inference appears to be a valuable tool to deepen our understanding of the human brain, but only because it takes into account the functional relation between brain areas. The perspective of causality and inter-variable dependence is further used to point out challenges in improving lesion behaviour models. Firstly, the dependencies in the data open up different possible strategies of data reduction, and considering those might improve post-stroke outcome prediction. Secondly, the role of non-topographical causal predictors of post stroke behaviour is discussed. The present article argues that, given these predictors, different strategies are required in the evaluation of model quality in lesion behaviour mapping and post stroke outcome prediction.

摘要

基于结构性病变成像来模拟行为缺陷是一种在人类大脑中绘制功能图谱的常用方法,并且将病变-行为建模进行转化应用以预测中风后结果的相关努力正在增加。然而,病变数据的高维复杂性给病变行为映射和中风后结果预测都带来了挑战。本文旨在从数据中因果和非因果依赖关系的角度重新构建这种复杂性,从而加深对其的理解,并讨论这种复杂性对不同数据建模方法意味着什么。通过理论讨论和实证检验,对几种常见策略和观点提出了挑战,并概述了未来的研究方向。一个主要结论是,病变-行为推断存在病变解剖学偏差,使用多变量模型或任何对数据中关系背后的因果关系视而不见的其他算法都无法克服这一偏差。这影响了病变行为映射的有效性,甚至可能错误地识别病变诱导的功能促进的矛盾效应——但正如本文所论证的,影响程度较小。因此,多变量病变-脑推断似乎是加深我们对人类大脑理解的一个有价值的工具,但这仅仅是因为它考虑了脑区之间的功能关系。因果关系和变量间依赖关系的视角还被用于指出改进病变行为模型时面临的挑战。首先,数据中的依赖关系开辟了不同的数据简化策略,考虑这些策略可能会改善中风后结果预测。其次,讨论了中风后行为的非地形因果预测因素的作用。本文认为,考虑到这些预测因素,在评估病变行为映射和中风后结果预测中的模型质量时需要不同的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验