Suppr超能文献

N-苄基 HMTA 诱导有机-无机杂化材料的自组装用于高效光催化降解四环素。

N-Benzyl HMTA induced self-assembly of organic-inorganic hybrid materials for efficient photocatalytic degradation of tetracycline.

机构信息

College of Chemistry, Zhengzhou University, Henan 450001, PR China.

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.

出版信息

J Hazard Mater. 2020 Jun 5;391:122121. doi: 10.1016/j.jhazmat.2020.122121. Epub 2020 Jan 16.

Abstract

Photocatalytic degradation technology (PDT), as one of the most important advanced oxidation technologies (AOTs) for environment-purifying, have drawn great attentions in recent years. It is highly desirable but remains challenging to design and synthesize catalysts with enhanced performance of photocatalysis. Herein, we develop a cation induced self-assembly strategy for the synthesis of two new organic-inorganic hybrid materials ({[BHMTA][Cu(SCN)]} (1), {[BHMTA][CuI]} (2) BHMTA = N-benzylhexamethylenetetramine bromide). Owing to their unique structural and the desirable composition, the as-prepared organic-inorganic hybrid materials exhibit high efficiency and excellent cycling stability for degradation of tetracycline (TC) under visible light irradiation. In addition, the effect factors for photocatalysis such as catalyst dosage, temperature, and pH were also investigated. The possible mechanism studied shows that superoxide radicals (O) and holes (h) are the main active substances in the degradation process of TC. This work may shed light on preparing new organic-inorganic hybrid materials with promising photocatalysis performance for water purification.

摘要

光催化降解技术(PDT)作为一种最重要的环境净化高级氧化技术(AOTs)之一,近年来引起了极大的关注。设计和合成具有增强光催化性能的催化剂是非常理想的,但仍然具有挑战性。在此,我们开发了一种阳离子诱导自组装策略,用于合成两种新型的有机-无机杂化材料{[BHMTA][Cu(SCN)]}(1)和{[BHMTA][CuI]}(2)(BHMTA= N-苄基六亚甲基四胺溴化物)。由于其独特的结构和理想的组成,所制备的有机-无机杂化材料在可见光照射下表现出高效和优异的四环素(TC)降解循环稳定性。此外,还研究了光催化的影响因素,如催化剂用量、温度和 pH 值。研究表明,超氧自由基(O)和空穴(h)是 TC 降解过程中的主要活性物质。这项工作可能为制备具有良好光催化性能的新型有机-无机杂化材料用于水净化提供了启示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验