Suppr超能文献

Pt/沸石Y/γ-氧化铝复合催化剂中铂纳米颗粒位置的评估

Assessment of the Location of Pt Nanoparticles in Pt/zeolite Y/γ-AlO Composite Catalysts.

作者信息

Oenema Jogchum, Hofmann Jan P, Hensen Emiel J M, Zečević Jovana, de Jong Krijn P

机构信息

Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 Utrecht 3584 CG The Netherlands.

Laboratory for Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB The Netherlands.

出版信息

ChemCatChem. 2020 Jan 18;12(2):615-622. doi: 10.1002/cctc.201901617. Epub 2019 Oct 30.

Abstract

The location of Pt nanoparticles was studied in Pt/zeolite Y/γ-AlO composite catalysts prepared by HPtCl ⋅ 6HO (CPA) or Pt(NH)(NO) (PTA) as Pt precursors. The aim of this study is to validate findings from Transmission Electron Microscopy (TEM) by using characterization techniques that sample larger amounts of catalyst per measurement. Quantitative X-ray Photoelectron Spectroscopy (XPS) showed that the catalyst prepared with CPA led to a significantly higher Pt/Al atomic ratio than the catalyst prepared with PTA confirming that the 1-2 nm sized Pt nanoparticles in the former catalyst were located on the open and mesoporous γ-AlO component, whereas they were located in the micropores of zeolite Y in the latter. By using infrared spectroscopy, a shift in the absorption band maximum of CO chemisorbed on Pt nanoparticles was observed, which can be attributed to a difference in electronic properties depending on the support of the Pt nanoparticles. Finally, model hydrogenation experiments were performed using β-phenylcinnamaldehyde, a reactant molecule with low diffusivity in zeolite Y micropores, resulting in a 5 times higher activity for the catalyst prepared by CPA compared to PTA. The combined use of these characterization techniques allow us to draw more robust conclusions on the ability to control the location of Pt nanoparticles by using either CPA or PTA as precursors in zeolite/γ-AlO composite catalyst materials.

摘要

研究了以氯铂酸六水合物(CPA)或硝酸铂(PTA)为铂前驱体制备的Pt/沸石Y/γ -Al₂O₃复合催化剂中铂纳米颗粒的位置。本研究的目的是通过使用每次测量能对大量催化剂进行取样的表征技术来验证透射电子显微镜(TEM)的研究结果。定量X射线光电子能谱(XPS)表明,用CPA制备的催化剂比用PTA制备的催化剂具有显著更高的Pt/Al原子比,这证实了前一种催化剂中1 - 2纳米大小的铂纳米颗粒位于开放的中孔γ -Al₂O₃组分上,而在后一种催化剂中它们位于沸石Y的微孔中。通过红外光谱法,观察到吸附在铂纳米颗粒上的CO的吸收带最大值发生了位移,这可归因于取决于铂纳米颗粒载体的电子性质差异。最后,使用β -苯基肉桂醛进行了模型加氢实验,β -苯基肉桂醛是一种在沸石Y微孔中扩散率较低的反应物分子,结果表明用CPA制备的催化剂的活性比用PTA制备的催化剂高5倍。这些表征技术的联合使用使我们能够就以CPA或PTA作为沸石/γ -Al₂O₃复合催化剂材料的前驱体来控制铂纳米颗粒位置的能力得出更可靠的结论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4df9/7006758/e225bd738f4d/CCTC-12-615-g001.jpg

相似文献

1
Assessment of the Location of Pt Nanoparticles in Pt/zeolite Y/γ-AlO Composite Catalysts.
ChemCatChem. 2020 Jan 18;12(2):615-622. doi: 10.1002/cctc.201901617. Epub 2019 Oct 30.
3
5
Ultra-dispersed Pt nanoparticles on SAPO-34/γ-Al2O3 support for efficient propane dehydrogenation.
J Nanosci Nanotechnol. 2014 Sep;14(9):6900-6. doi: 10.1166/jnn.2014.8956.
6
Preparation of platinum nanoparticle and its catalytic activity for toluene oxidation.
J Nanosci Nanotechnol. 2011 Aug;11(8):7347-52. doi: 10.1166/jnn.2011.4768.
7
The Origin of Metal Loading Heterogeneities in Pt/Zeolite Y Bifunctional Catalysts.
ChemCatChem. 2019 Aug 21;11(16):4081-4088. doi: 10.1002/cctc.201900441. Epub 2019 May 24.
8
Pt/AlO@Ce/ZrO-S bifunctional catalysts prepared by mechanically milling for selective catalytic oxidation of high-concentration ammonia.
Environ Sci Pollut Res Int. 2024 May;31(25):37746-37756. doi: 10.1007/s11356-024-33744-6. Epub 2024 May 24.
9
Heterogeneities of the nanostructure of platinum/zeolite y catalysts revealed by electron tomography.
ACS Nano. 2013 Apr 23;7(4):3698-705. doi: 10.1021/nn400707p. Epub 2013 Mar 29.
10
Impact of CaO-Modified γ-AlO Support on CO Oxidation Activity of Pt/LaFeO Catalyst.
ACS Appl Mater Interfaces. 2024 Nov 27;16(47):64714-64724. doi: 10.1021/acsami.4c13600. Epub 2024 Nov 15.

引用本文的文献

1

本文引用的文献

1
The Origin of Metal Loading Heterogeneities in Pt/Zeolite Y Bifunctional Catalysts.
ChemCatChem. 2019 Aug 21;11(16):4081-4088. doi: 10.1002/cctc.201900441. Epub 2019 May 24.
2
Visualizing pore architecture and molecular transport boundaries in catalyst bodies with fluorescent nanoprobes.
Nat Chem. 2019 Jan;11(1):23-31. doi: 10.1038/s41557-018-0163-z. Epub 2018 Nov 5.
3
Ultrasmall Metal Nanoparticles Confined within Crystalline Nanoporous Materials: A Fascinating Class of Nanocatalysts.
Adv Mater. 2019 Jan;31(1):e1803966. doi: 10.1002/adma.201803966. Epub 2018 Oct 1.
4
Zeolite-Encapsulated Pt Nanoparticles for Tandem Catalysis.
J Am Chem Soc. 2018 Oct 17;140(41):13514-13520. doi: 10.1021/jacs.8b09568. Epub 2018 Oct 8.
5
Engineering of Transition Metal Catalysts Confined in Zeolites.
Chem Mater. 2018 May 22;30(10):3177-3198. doi: 10.1021/acs.chemmater.8b01311. Epub 2018 May 7.
6
Reversible Transformation of Pt Nanoparticles into Single Atoms inside High-Silica Chabazite Zeolite.
J Am Chem Soc. 2016 Dec 7;138(48):15743-15750. doi: 10.1021/jacs.6b10169. Epub 2016 Nov 23.
7
Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D.
Nat Mater. 2017 Jan;16(1):132-138. doi: 10.1038/nmat4757. Epub 2016 Sep 26.
9
Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons.
Nature. 2015 Dec 10;528(7581):245-8. doi: 10.1038/nature16173.
10
Life and death of a single catalytic cracking particle.
Sci Adv. 2015 Apr 3;1(3):e1400199. doi: 10.1126/sciadv.1400199. eCollection 2015 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验