Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States.
Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States.
J Am Chem Soc. 2020 Mar 4;142(9):4445-4455. doi: 10.1021/jacs.9b13530. Epub 2020 Feb 17.
The lipopolysaccharide biosynthesis pathway is considered an attractive drug target against the rising threat of multi-drug-resistant Gram-negative bacteria. Here, we report two novel small-molecule inhibitors (compounds and ) of the acyltransferase LpxA, the first enzyme in the lipopolysaccharide biosynthesis pathway. We show genetically that the antibacterial activities of the compounds against efflux-deficient are mediated by LpxA inhibition. Consistently, the compounds inhibited the LpxA enzymatic reaction in vitro. Intriguingly, using biochemical, biophysical, and structural characterization, we reveal two distinct mechanisms of LpxA inhibition; compound is a substrate-competitive inhibitor targeting apo LpxA, and compound is an uncompetitive inhibitor targeting the LpxA/product complex. Compound exhibited more favorable biological and physicochemical properties than compound and was optimized using structural information to achieve improved antibacterial activity against wild-type . These results show that LpxA is a promising antibacterial target and imply the advantages of targeting enzyme/product complexes in drug discovery.
脂多糖生物合成途径被认为是针对日益严重的多药耐药革兰氏阴性菌威胁的有吸引力的药物靶点。在这里,我们报告了两种新型的酰基转移酶 LpxA 的小分子抑制剂(化合物 和 ),LpxA 是脂多糖生物合成途径中的第一个酶。我们通过遗传证明,化合物对流出缺陷 的抗菌活性是通过 LpxA 抑制介导的。一致地,这些化合物在体外抑制了 LpxA 的酶反应。有趣的是,通过生化、生物物理和结构特征,我们揭示了 LpxA 抑制的两种不同机制;化合物 是针对脱辅基 LpxA 的底物竞争性抑制剂,而化合物 是针对 LpxA/产物复合物的非竞争性抑制剂。化合物 表现出比化合物 更优良的生物学和物理化学性质,并且使用结构信息进行了优化,以实现对野生型 的改善的抗菌活性。这些结果表明 LpxA 是一个有前途的抗菌靶标,并暗示了在药物发现中靶向酶/产物复合物的优势。