Suppr超能文献

5D 心脏模型的医学决策:模板匹配技术与第五维度的模拟。

Medical decision making for 5D cardiac model: Template matching technique and simulation of the fifth dimension.

机构信息

COSMOS Laboratory -National Institute of Computer Sciences (ENSI), University of Mannouba, Tunisia.

RSNA Member and Chief of the Radiology and Medical Imaging Unit within the International Center Carthage Medical, Tourist Area "JINEN EL OUEST"-5000 Monastir, Tunisia.

出版信息

Comput Methods Programs Biomed. 2020 Jul;191:105382. doi: 10.1016/j.cmpb.2020.105382. Epub 2020 Feb 7.

Abstract

The purpose of this paper is to develop a 5D cardiac model which is inspired from the 5D model for the lungs. This model depends on five variables: the anatomical structure of the 3D heart, temporal dimension and the function of blood flow as the fifth dimension. To test this hypothesis, we took the same mathematical modeling as a reference for the fifth dimension of pulmonary flow where r→(t)=r→(t)+r→(t) wherer→(t) is the displacement vectors with approximate magnitudes by linear functions of the tidal volume and r→(t) is the blood flow. The scans were acquired for 10 patients,in the 404 series for a total of 18,483 images studied in three cases: healthy patient, case of heart failure and aortic stenosis. Where r→and r→ are the unit vectors along the volume of ejection and the blood flow axes, indicating the direction of motion of the object due to heart volume ejection and blood flow variations, respectively. The quantities of α and β coefficients are determined from real-time patient image data. The alpha and beta coefficients are derived from the following dimension equations[mm / ml] [mm*ms / ml] . Since the cardiac system has two diastolic and systolic phases, we have calculated α and β for telediatolic volume and α and β for telesystolic volume throughout the cardiac cycle as a function of the location of the cuts chosen randomly. Fifth-dimensional experiments are used to track, simulate the behavior of blood flow to detect preliminary indications for the identification of stenosis or valve leakage. The average discrepancy was tabulated as the global fraction of systolic ejection. The results shown in Fig. 3 detect a correspondence between the hunting chamber cut and the flow sequence through the orifice of aorta for this patient with suspicious of having an aortic stenosis disease and an ejection fraction about 71% with a maximum of velocity (Vmax) detected=250 (cm / ms) = 2.5 (m / 10-3 s). In this case this patient has a minor stenosis in the aorta. It should be referred that the normalization of this measures is classified such as : Minor stenosis: area 1.5 cm2, Vmax <3 m / moderate stenosis: area 1.0 - 1.5 cm2, Vmax 3 - 4 m / severe stenosis: area <1.0 cm2, Vmax> 4 m / s. For a patient who has an aortic stenosis the cloud of the points is accumulated comparing to the origin of the axis while the patient with a symptom of insufficiency the points are widened with a remarkable gap in the trajectory. To solve the issue of the bad prediction, the inaccuracy of the clouds points of the model 5D, the lack of the exact measurements to estimate the degree of cardiac insufficiency (leakage or stenosis), a solution of 5D imagery was depicted. Our main contribution is to test the validity of the template-matching algorithm and the fifth dimension simulation to provide more clues to detect the aortic stenosis and cardiac insufficiency in the context of medical decision support.

摘要

本文旨在开发一种受肺部 5D 模型启发的 5D 心脏模型。该模型依赖于五个变量:3D 心脏的解剖结构、时间维度和血流功能作为第五维度。为了验证这一假设,我们采用了相同的数学模型作为肺流第五维度的参考,其中 r→(t)=r→(t)+r→(t),其中 r→(t) 是位移向量,其大小近似为线性函数的潮气量和 r→(t) 是血流。对 10 名患者进行了扫描,在 404 系列中总共研究了 18483 张图像,分为三种情况:健康患者、心力衰竭和主动脉瓣狭窄患者。其中 r→和 r→分别是沿射血和血流轴的单位向量,分别表示由于心脏射血和血流变化引起的物体运动方向。α 和 β 系数的数量是从实时患者图像数据中确定的。α 和 β 系数是从以下维度方程中得出的[mm / ml] [mm * ms / ml]。由于心脏系统有两个舒张期和收缩期,因此我们在整个心动周期中计算了 telediatolic 体积的α 和 β 以及 telesystolic 体积的α 和 β,作为随机选择的切割位置的函数。第五维实验用于跟踪、模拟血流行为,以检测狭窄或瓣膜泄漏的初步迹象。平均差异被制表为整体收缩射血分数。图 3 中的结果检测到了在这个有可疑主动脉瓣狭窄疾病的患者中,心室瓣切开术与主动脉瓣口血流序列之间的对应关系,并且最大速度(Vmax)检测到=250(cm / ms)= 2.5(m / 10-3 s)。在这种情况下,该患者的主动脉瓣有轻微狭窄。应当指出,这些测量的归一化被分类为:轻度狭窄:面积 1.5 cm2,Vmax <3 m / 中度狭窄:面积 1.0-1.5 cm2,Vmax 3-4 m / 重度狭窄:面积<1.0 cm2,Vmax> 4 m / s。对于有主动脉瓣狭窄的患者,与轴的原点相比,点云会聚集;而对于有功能不全症状的患者,点会变宽,轨迹中有明显的间隙。为了解决预测不佳的问题,我们提出了 5D 图像的模型来解决 5D 图像中云点的不准确性问题,缺乏准确测量来估计心脏功能不全(泄漏或狭窄)的程度,为医学决策支持提供更多线索来检测主动脉瓣狭窄和心脏功能不全。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验