The Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
School of Public Health, Qingdao University, Qingdao 266071, China.
Environ Pollut. 2020 Jun;261:114160. doi: 10.1016/j.envpol.2020.114160. Epub 2020 Feb 10.
Arsenic exposure contributed to the development of human diseases. Arsenic exerted multiple organ toxicities mainly by triggering oxidative stress. However, the signaling pathway underlying oxidative stress is unclear. We previously found that the expression of SFPQ, a splicing factor, was positively associated with urinary arsenic concentration in an arsenic-exposed population, suggesting an oxidative stress regulatory role for SFPQ. To test this hypothesis, we established cell models of oxidative stress in human hepatocyte cells (L02) treated with NaAsO. Reactive oxygen species (ROS) synthesis displayed a time- and dose-dependent increase with NaAsO treatment. SFPQ suppression resulted in a 36%-53% decrease in ROS generation, leading to enhanced cellular damage determined by 8-OHdG, comet tail moment, and micronucleus analysis. Particularly, SFPQ deficiency attenuated expression of the oxidase genes DUOX1, DUOX2, NCF2, and NOX2. A fluorescent-based RNA electrophoretic mobility shift assay (FREMSA) and dual-luciferase reporter system revealed that miR-92b-5p targeted DUOX2 mRNA degradation. An RNA immunoprecipitation assay showed an interaction between SFPQ and miR-92b-5p of the miRNA-induced silencing complex (miRISC). Notably, NaAsO treatment diminished the interaction between SFPQ and miR92b-5p, accompanied by decreased binding between miR-92b-5p and 3'-UTR of DUOX2. However, SFPQ deficiency suppressed the dissociation of miR-92b-5p from 3'-UTR of DUOX2, indicating that miR-92b-5p regulated the SFPQ-dependent DUOX2 expression. Taken together, we reveal that SFPQ responds to arsenic-induced oxidative stress by interacting with the miRISC. These findings offer new insight into the potential role of SFPQ in regulating cellular stress response.
砷暴露会导致人类疾病的发生。砷主要通过引发氧化应激发挥多种器官毒性。然而,氧化应激的信号通路尚不清楚。我们之前发现,剪接因子 SFPQ 的表达与暴露于砷人群中的尿砷浓度呈正相关,这表明 SFPQ 具有氧化应激调节作用。为了验证这一假设,我们在用人肝细胞(L02)建立的氧化应激细胞模型中用 NaAsO 进行处理。结果显示,活性氧(ROS)的合成随 NaAsO 处理呈时间和剂量依赖性增加。SFPQ 抑制导致 ROS 生成减少 36%-53%,导致 8-OHdG、彗星尾巴瞬间和微核分析确定的细胞损伤增强。特别是,SFPQ 缺陷减弱了氧化酶基因 DUOX1、DUOX2、NCF2 和 NOX2 的表达。荧光基于 RNA 电泳迁移率变动分析(FREMSA)和双荧光素酶报告系统显示,miR-92b-5p 靶向 DUOX2 mRNA 降解。RNA 免疫沉淀测定显示 SFPQ 与 miRNA 诱导的沉默复合物(miRISC)中的 miR-92b-5p 相互作用。值得注意的是,NaAsO 处理减弱了 SFPQ 与 miR92b-5p 的相互作用,同时 miR-92b-5p 与 DUOX2 的 3'-UTR 之间的结合减少。然而,SFPQ 缺陷抑制了 miR-92b-5p 从 DUOX2 的 3'-UTR 解离,表明 miR-92b-5p 调节 SFPQ 依赖性 DUOX2 表达。综上所述,我们揭示了 SFPQ 通过与 miRISC 相互作用来应对砷诱导的氧化应激。这些发现为 SFPQ 在调节细胞应激反应中的潜在作用提供了新的见解。