Shrivastav Gaurav P, H Siboni Nima, Klapp Sabine H L
Institut für Theoretische Physik, Technische Universität Wien, Wiedner Hauptstr. 8-10/136, 1040 Vienna, Austria.
Soft Matter. 2020 Mar 11;16(10):2516-2527. doi: 10.1039/c9sm02080b.
Using non-equilibrium molecular dynamics simulations, we study the rheology of a model hybrid mixture of liquid crystals (LCs) and dipolar soft spheres (DSS) representing magnetic nanoparticles. The bulk isotropic LC-DSS mixture is sheared with different shear rates using Lees-Edwards periodic boundary conditions. The steady-state rheological properties and the effect of the shear on the microstructure of the mixture are studied for different strengths of the dipolar coupling, λ, among the DSS. We find that at large shear rates, the mixture shows a shear-thinning behavior for all considered values of λ. At low and intermediate values of λ, a crossover from Newtonian to non-Newtonian behavior is observed as the rate of applied shear is increased. In contrast, for large values of λ, such a crossover is not observed within the range of shear rates considered. Also, the extent of the non-Newtonian regime increases as λ is increased. These features can be understood via the shear-induced changes of the microstructure. In particular, the LCs display a shear-induced isotropic-to-nematic transition at large shear rates with a shear-rate dependent degree of nematic ordering. The DSS show a shear-induced nematic ordering only for large values of λ, where the particles self-assemble into chains. Moreover, at large λ and low shear rates, our simulations indicate that the DSS form ferromagnetic domains.
我们使用非平衡分子动力学模拟,研究了一种由液晶(LCs)和代表磁性纳米颗粒的偶极软球(DSS)组成的模型混合混合物的流变学。使用Lees-Edwards周期性边界条件,以不同的剪切速率对整体各向同性的LC-DSS混合物进行剪切。针对DSS之间不同强度的偶极耦合λ,研究了混合物的稳态流变特性以及剪切对混合物微观结构的影响。我们发现,在高剪切速率下,对于所有考虑的λ值,混合物都表现出剪切变稀行为。在λ的低和中间值时,随着施加剪切速率的增加,观察到从牛顿行为到非牛顿行为的转变。相比之下,对于大的λ值,在所考虑的剪切速率范围内未观察到这种转变。而且,非牛顿区域的范围随着λ的增加而增大。这些特征可以通过微观结构的剪切诱导变化来理解。特别是,LCs在高剪切速率下表现出剪切诱导的各向同性向向列相转变,其向列有序度与剪切速率有关。DSS仅在大的λ值时表现出剪切诱导的向列有序,此时颗粒自组装成链。此外,在大的λ和低剪切速率下,我们的模拟表明DSS形成铁磁畴。