Center Lab of Longhua Branch and Department of Infectious disease, Shenzhen People's Hospital, second Clinical Medical College of Jinan University, Shenzhen 518120, Guangdong Province, China.
INRS, Énergie Matériaux Télécommunications Centre, 1650 boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S2.
ACS Nano. 2020 Mar 24;14(3):2956-2965. doi: 10.1021/acsnano.9b07671. Epub 2020 Feb 18.
Surface-confined synthesis is a promising approach to build complex molecular nanostructures including macrocycles. However, despite the recent advances in on-surface macrocyclization under ultrahigh vacuum, selective synthesis of monodisperse and multicomponent macrocycles remains a challenge. Here, we report on an on-surface formation of [6 + 6] Schiff-base macrocycles dynamic covalent chemistry. The macrocycles form two-dimensional crystalline domains on the micrometer scale, enabled by dynamic conversion of open-chain oligomers into well-defined ∼3.0 nm hexagonal macrocycles. We further show that by tailoring the length of the alkyl substituents, it is possible to control which of three possible products-oligomers, macrocycles, or polymers-will form at the surface. scanning tunneling microscopy imaging combined with density functional theory calculations and molecular dynamics simulations unravel the synergistic effect of surface confinement and solvent in leading to preferential on-surface macrocyclization.
表面限制合成是构建复杂分子纳米结构(包括大环)的一种很有前途的方法。然而,尽管在超高真空下的表面大环化方面最近取得了进展,但单分散和多组分大环的选择性合成仍然是一个挑战。在这里,我们报告了一种基于动态共价化学的表面[6+6]席夫碱大环的形成。大环通过开链低聚物动态转化为尺寸约为 3.0nm 的六边形大环,在微米尺度上形成二维结晶畴。我们进一步表明,通过调整烷基取代基的长度,可以控制三种可能的产物——低聚物、大环或聚合物——中哪一种会在表面形成。扫描隧道显微镜成像与密度泛函理论计算和分子动力学模拟相结合,揭示了表面限制和溶剂协同作用导致优先表面大环化的机制。