Fluxion Biosciences, Alameda, California.
Eurofins Discovery, Eurofins Panlabs, Inc., St. Charles, Missouri.
Curr Protoc Pharmacol. 2020 Mar;88(1):e73. doi: 10.1002/cpph.73.
Automated patch-clamp (APC) systems have become indispensable tools of drug-discovery programs by allowing high-throughput electrophysiology-based screening of ion channel compounds. The recent development and introduction of microfluidics-based APC systems have made it possible to study the interactions of ligand-gated ion channels with pharmacological reagents, such as agonists, antagonists, or positive allosteric modulators (PAMs), with reliable pharmacological results comparable to those of the gold-standard manual patch-clamp technique while maintaining high-throughput capacity. Many ligand-gated ion channels exhibit rapid desensitization upon repetitive introduction of ligands; this loss of channel activity in the absence of pharmacological interaction poses a challenge for developing accurate, precise, and robust assays with high success rate, low run-down, and reliable pharmacological results. Here we present procedures to study nicotinic acetylcholine receptors (nAChRs) with the IonFlux™, an automated patch-clamp system with continuous flow and precise fluidic exchange; these procedures can also be generalized to the study of other ligand-gated ion channels. We present protocols to study agonist, antagonist, and PAM activities on nAChRs, particularly the rapidly desensitizing nAChR α7 receptors. The data demonstrate that the IonFlux™ system is a fast, robust, and reliable platform for the study of nAChRs and other ligand-gated ion channels, generating data that closely mimic those from manual patch-clamp conditions. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Measuring agonist concentration-dependent response Basic Protocol 2: Measuring antagonist concentration-dependent response Basic Protocol 3: Measuring positive allosteric modulator (PAM) concentration-dependent response Support Protocol 1: Basic IonFlux system operation Support Protocol 2: Plate care and filling Support Protocol 3: Plate preparation for water rinsing Support Protocol 4: Water rinsing of plates Support Protocol 5: Plate priming Support Protocol 6: General assay Support Protocol 7: Editing the compound addition sequence (compound list) Support Protocol 8: Creating compound list for agonist concentration-dependent response Support Protocol 9: Creating compound list for antagonist or PAM concentration-dependent response Support Protocol 10: Defining the different compounds used or compound list Support Protocol 11: Maintenance Support Protocol 12: Data analysis Support Protocol 13: Cell culture.
自动化膜片钳(APC)系统已经成为药物发现计划中不可或缺的工具,因为它可以通过高通量基于电生理学的离子通道化合物筛选。最近基于微流控的 APC 系统的发展和引入使得研究配体门控离子通道与药理学试剂(如激动剂、拮抗剂或正变构调节剂(PAM))的相互作用成为可能,其可靠的药理学结果可与金标准手动膜片钳技术相媲美,同时保持高通量能力。许多配体门控离子通道在重复引入配体时会迅速脱敏;在没有药理学相互作用的情况下,通道活性的丧失给开发具有高成功率、低耗竭和可靠药理学结果的准确、精确和稳健的测定方法带来了挑战。在这里,我们介绍了使用 IonFlux™(一种具有连续流动和精确流体交换的自动化膜片钳系统)研究烟碱型乙酰胆碱受体(nAChR)的程序;这些程序也可以推广到其他配体门控离子通道的研究。我们介绍了研究激动剂、拮抗剂和 PAM 对 nAChR 活性的方案,特别是快速脱敏的 nAChR α7 受体。这些数据表明,IonFlux™ 系统是研究 nAChR 和其他配体门控离子通道的快速、稳健和可靠平台,产生的数据与手动膜片钳条件下的数据非常相似。
版权所有 © 2020 约翰威立父子公司。基本方案 1:测量激动剂浓度依赖性反应基本方案 2:测量拮抗剂浓度依赖性反应基本方案 3:测量正变构调节剂(PAM)浓度依赖性反应支持方案 1:基本 IonFlux 系统操作支持方案 2:板护理和填充支持方案 3:板准备水冲洗支持方案 4:板冲洗支持方案 5:板预冲洗支持方案 6:一般测定支持方案 7:编辑化合物添加顺序(化合物列表)支持方案 8:创建激动剂浓度依赖性反应的化合物列表支持方案 9:创建拮抗剂或 PAM 浓度依赖性反应的化合物列表支持方案 10:定义使用的不同化合物或化合物列表支持方案 11:维护支持方案 12:数据分析支持方案 13:细胞培养。