Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
ACS Infect Dis. 2020 Apr 10;6(4):738-746. doi: 10.1021/acsinfecdis.9b00460. Epub 2020 Feb 27.
Upon infecting a red blood cell (RBC), the malaria parasite drastically remodels its host by exporting hundreds of proteins into the RBC cytosol. This protein export program is essential for parasite survival. Hence export-related proteins could be potential drug targets. One essential enzyme in this pathway is plasmepsin V (PMV), an aspartic protease that processes export-destined proteins in the parasite endoplasmic reticulum (ER) at the export element (PEXEL) motif. Despite long-standing interest in this enzyme, functional studies have been hindered by the inability of previous technologies to produce a regulatable lethal depletion of PMV. To overcome this technical barrier, we designed a system for stringent post-transcriptional regulation allowing a tightly controlled, tunable knockdown of PMV. Using this system, we found that PMV must be dramatically depleted to affect parasite growth, suggesting the parasite maintains this enzyme in substantial excess. Surprisingly, depletion of PMV arrested parasite growth immediately after RBC invasion, significantly before the death from exported protein deficit that has previously been described. The data suggest that PMV inhibitors can halt parasite growth at two distinct points in the parasite life cycle. However, overcoming the functional excess of PMV in the parasite may require inhibitor concentrations far beyond the enzyme's IC.
疟原虫感染红细胞(RBC)后,通过将数百种蛋白质输出到 RBC 胞质溶胶中,剧烈重塑宿主。这个蛋白质输出程序对寄生虫的生存至关重要。因此,与输出相关的蛋白质可能是潜在的药物靶点。该途径中的一种必需酶是质膜蛋白酶 V(PMV),它是一种天冬氨酸蛋白酶,在寄生虫内质网(ER)中的输出元件(PEXEL)基序处处理出口蛋白。尽管人们对这种酶一直很感兴趣,但由于以前的技术无法产生可调节的致死性 PMV 耗竭,因此功能研究受到了阻碍。为了克服这个技术障碍,我们设计了一个严格的转录后调控系统,允许对 PMV 进行紧密控制和可调的敲低。使用这个系统,我们发现必须显著耗尽 PMV 才能影响寄生虫的生长,这表明寄生虫以大量过剩的形式维持这种酶。令人惊讶的是,PMV 的耗竭会在 RBC 入侵后立即阻止寄生虫的生长,这比以前描述的因缺乏输出蛋白而导致的寄生虫死亡要早得多。这些数据表明,PMV 抑制剂可以在寄生虫生命周期的两个不同点阻止寄生虫的生长。然而,要克服寄生虫中 PMV 的功能过剩,可能需要抑制剂浓度远远超过该酶的 IC。