Stephan Simon, Hasse Hans
Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern, 67663 Kaiserslautern, Germany.
Phys Rev E. 2020 Jan;101(1-1):012802. doi: 10.1103/PhysRevE.101.012802.
Properties of vapor-liquid equilibria and planar interfaces of binary Lennard-Jones truncated and shifted mixtures were investigated with molecular dynamics simulations, density gradient theory, and conformal solution theory at constant liquid phase composition and temperature. The results elucidate the influence of the liquid phase interactions on the interfacial properties (surface tension, surface excess, interfacial thickness, and enrichment). The studied mixtures differ in the ratios of the dispersion energies of the two components ɛ_{2}/ɛ_{1} and the binary interaction parameter ξ. By varying ξ and ɛ_{2}/ɛ_{1}, a variety of types of phase behavior is covered by this paper. The dependence of the interfacial properties on the variables ξ and ɛ_{2}/ɛ_{1} reveals regularities that can be explained by conformal solution theory of the liquid phase. It is thereby shown that the interfacial properties of the mixtures are dominated by the mean liquid phase interactions whereas the vapor phase has only a minor influence.
采用分子动力学模拟、密度梯度理论和共形溶液理论,在恒定液相组成和温度下,研究了二元截断和位移Lennard-Jones混合物的气液平衡性质和平面界面。结果阐明了液相相互作用对界面性质(表面张力、表面超额、界面厚度和富集)的影响。所研究的混合物在两种组分的色散能之比ɛ₂/ɛ₁和二元相互作用参数ξ方面存在差异。通过改变ξ和ɛ₂/ɛ₁,本文涵盖了多种类型的相行为。界面性质对变量ξ和ɛ₂/ɛ₁的依赖性揭示了可以用液相共形溶液理论解释的规律。由此表明,混合物的界面性质主要由平均液相相互作用决定,而气相的影响较小。