Vazquez Federico, Saintier Nicolas, Pinasco Juan Pablo
Instituto de Cálculo, FCEN, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina.
Departamento de Matemática and IMAS, UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (1428) Pabellón I, Ciudad Universitaria, Buenos Aires, Argentina.
Phys Rev E. 2020 Jan;101(1-1):012101. doi: 10.1103/PhysRevE.101.012101.
We introduce and study a simple model for the dynamics of voting intention in a population of agents that have to choose between two candidates. The level of indecision of a given agent is modeled by its propensity to vote for one of the two alternatives, represented by a variable p∈[0,1]. When an agent i interacts with another agent j with propensity p_{j}, then i either increases its propensity p_{i} by h with probability P_{ij}=ωp_{i}+(1-ω)p_{j}, or decreases p_{i} by h with probability 1-P_{ij}, where h is a fixed step. We assume that the interactions form a complete graph, where each agent can interact with any other agent. We analyze the system by a rate equation approach and contrast the results with Monte Carlo simulations. We find that the dynamics of propensities depends on the weight ω that an agent assigns to its own propensity. When all the weight is assigned to the interacting partner (ω=0), agents' propensities are quickly driven to one of the extreme values p=0 or p=1, until an extremist absorbing consensus is achieved. However, for ω>0 the system first reaches a quasistationary state of symmetric polarization where the distribution of propensities has the shape of an inverted Gaussian with a minimum at the center p=1/2 and two maxima at the extreme values p=0,1, until the symmetry is broken and the system is driven to an extremist consensus. A linear stability analysis shows that the lifetime of the polarized state, estimated by the mean consensus time τ, diverges as τ∼(1-ω)^{-2}lnN when ω approaches 1, where N is the system size. Finally, a continuous approximation allows us to derive a transport equation whose convection term is compatible with a drift of particles from the center toward the extremes.
我们引入并研究了一个简单模型,用于描述在必须在两位候选人之间做出选择的一群主体中投票意向的动态变化。给定主体的犹豫不决程度通过其投票给两个选项之一的倾向来建模,用变量(p\in[0,1])表示。当主体(i)与倾向为(p_j)的另一个主体(j)相互作用时,那么(i)要么以概率(P_{ij}=\omega p_i+(1 - \omega)p_j)将其倾向(p_i)增加(h),要么以概率(1 - P_{ij})将(p_i)减少(h),其中(h)是一个固定步长。我们假设相互作用形成一个完全图,其中每个主体都可以与任何其他主体相互作用。我们通过速率方程方法分析该系统,并将结果与蒙特卡罗模拟进行对比。我们发现倾向的动态变化取决于主体赋予自身倾向的权重(\omega)。当所有权重都赋予相互作用的伙伴((\omega = 0))时,主体的倾向会迅速被驱动到极端值(p = 0)或(p = 1)之一,直到达成极端主义吸收共识。然而,对于(\omega>0),系统首先会达到一个对称极化的准稳态,此时倾向的分布呈倒高斯形状,在中心(p = 1/2)处有最小值,在极端值(p = 0,1)处有两个最大值,直到对称性被打破且系统被驱动到极端主义共识。线性稳定性分析表明,当(\omega)接近(1)时,由平均共识时间(\tau)估计的极化状态的寿命发散,即(\tau\sim(1 - \omega)^{-2}\ln N),其中(N)是系统规模。最后,一个连续近似使我们能够推导出一个输运方程,其对流项与粒子从中心向极端的漂移兼容。