Biochemical Engineering Laboratory, Department of Chemical Engineering, Annamalai University, Cuddalore, 608001, India.
Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
Chemosphere. 2020 May;247:125806. doi: 10.1016/j.chemosphere.2019.125806. Epub 2020 Jan 6.
This study evaluated the biological removal of trichloroethylene (TCE) by Rhodococcus opacus using airlift bioreactor under continuous operation mode. The effect of inlet TCE concentration in the range 0.12-2.34 g m on TCE removal has studied for 55 days. During the continuous bioreactor operation, a maximum of 96% TCE removal was obtained for low inlet TCE concentration, whereas the highest elimination capacity was 151.2 g m h for the TCE loading rate of 175.0 g m h. The carbon dioxide (CO) concentration profile from the airlift bioreactor revealed that the degraded TCE has primarily converted to CO with a fraction of organic carbon utilized for bacterial growth. The artificial neural network (ANN) based model was able to successfully predict the performance of the bioreactor system using the Levenberg-Marquardt (LM) back propagation algorithm, and optimized biological topology is 3:12:1. The prediction accuracy of the model was high as the experimental data were in good agreement (R = 0.9923) with the ANN predicted data. Overall, from the bioreactor experiments and its ANN modeling, the potential strength of R. opacus in TCE biodegradation is proved.
本研究采用气升式生物反应器在连续运行模式下评估罗德里格斯氏菌(Rhodococcus opacus)对三氯乙烯(TCE)的生物去除效果。研究了入口 TCE 浓度在 0.12-2.34 g/m 范围内对 TCE 去除的影响,持续了 55 天。在连续生物反应器运行期间,对于低入口 TCE 浓度,可获得最高 96%的 TCE 去除率,而对于 TCE 负荷率为 175.0 g/m h,最高消除能力为 151.2 g/m h。从气升式生物反应器获得的二氧化碳(CO)浓度分布表明,降解的 TCE 主要转化为 CO,一部分有机碳用于细菌生长。基于人工神经网络(ANN)的模型能够成功地使用列文伯格-马夸尔特(LM)反向传播算法预测生物反应器系统的性能,并且优化的生物拓扑结构为 3:12:1。由于实验数据与 ANN 预测数据高度吻合(R=0.9923),因此该模型的预测精度很高。总体而言,通过生物反应器实验及其 ANN 建模,证明了罗德里格斯氏菌(Rhodococcus opacus)在 TCE 生物降解方面的潜在优势。