Suppr超能文献

无线传感器网络中基于数据错误感知的数据缩减的数据聚类方法。

Error-Aware Data Clustering for In-Network Data Reduction in Wireless Sensor Networks.

机构信息

Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia.

Department of Information Technology, Otago Polytechnic, Dunedin 9016, New Zealand.

出版信息

Sensors (Basel). 2020 Feb 13;20(4):1011. doi: 10.3390/s20041011.

Abstract

A wireless sensor network (WSN) deploys hundreds or thousands of nodes that may introduce large-scale data over time. Dealing with such an amount of collected data is a real challenge for energy-constraint sensor nodes. Therefore, numerous research works have been carried out to design efficient data clustering techniques in WSNs to eliminate the amount of redundant data before transmitting them to the sink while preserving their fundamental properties. This paper develops a new error-aware data clustering (EDC) technique at the cluster-heads (CHs) for in-network data reduction. The proposed EDC consists of three adaptive modules that allow users to choose the module that suits their requirements and the quality of the data. The histogram-based data clustering (HDC) module groups temporal correlated data into clusters and eliminates correlated data from each cluster. Recursive outlier detection and smoothing (RODS) with HDC module provides error-aware data clustering, which detects random outliers using temporal correlation of data to maintain data reduction errors within a predefined threshold. Verification of RODS (V-RODS) with HDC module detects not only random outliers but also frequent outliers simultaneously based on both the temporal and spatial correlations of the data. The simulation results show that the proposed EDC is computationally cheap, able to reduce a significant amount of redundant data with minimum error, and provides efficient error-aware data clustering solutions for remote monitoring environmental applications.

摘要

无线传感器网络 (WSN) 部署了数百个或数千个节点,这些节点可能会随着时间的推移引入大规模数据。处理如此大量的采集数据对于能量受限的传感器节点来说是一个真正的挑战。因此,已经进行了大量的研究工作来设计高效的数据聚类技术,以在将数据传输到汇聚节点之前消除冗余数据的数量,同时保留其基本特性。本文在簇头 (CH) 处开发了一种新的基于误差感知的数据聚类 (EDC) 技术,用于网络内数据减少。所提出的 EDC 由三个自适应模块组成,允许用户选择适合其需求和数据质量的模块。基于直方图的数据聚类 (HDC) 模块将时间相关数据分组到簇中,并从每个簇中消除相关数据。具有 HDC 模块的递归异常值检测和平滑 (RODS) 提供了基于数据时间相关性的误差感知数据聚类,该聚类使用时间相关性来检测随机异常值,以将数据减少误差保持在预定义的阈值内。基于 HDC 模块的验证 RODS (V-RODS) 不仅可以根据数据的时间和空间相关性同时检测随机异常值,还可以检测频繁异常值。仿真结果表明,所提出的 EDC 计算成本低,能够以最小的误差减少大量的冗余数据,并为远程监测环境应用提供高效的误差感知数据聚类解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16f3/7071511/c8cdc4ddb08e/sensors-20-01011-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验