Yao Chao, Zhao Jiajun, Zhu Yanan, Liu Bin, Yan Chaoyi, Perepichka Dmitrii F, Meng Hong
School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A0B8, Quebec, Canada.
ACS Appl Mater Interfaces. 2020 Mar 11;12(10):11543-11550. doi: 10.1021/acsami.9b20544. Epub 2020 Feb 28.
Herein, we report a new molecule structure modification strategy for non-fullerene small-molecule electron acceptors (NFAs) for solar cells through trifluoromethylation of end-capping groups. The synthesized trifluoromethylated acceptor ITCF3 exhibits narrower band gap, stronger light absorption, lower molecular energy levels, and better electron transport property compared to the reference NFA without the trifluoromethyl group (ITIC). Bulk heterojunction solar cells based on ITCF3 combined with the PM6 polymer donor exhibit a significantly improved power conversion efficiency of 13.3% compared with the ITIC-based device (8.4%). This work reveals great potential of trifluoromethylation in the design of efficient photovoltaic acceptor materials.
在此,我们报道了一种通过封端基团的三氟甲基化对用于太阳能电池的非富勒烯小分子电子受体(NFAs)进行新的分子结构修饰策略。与没有三氟甲基的参比NFA(ITIC)相比,合成的三氟甲基化受体ITCF3具有更窄的带隙、更强的光吸收、更低的分子能级和更好的电子传输性能。基于ITCF3与PM6聚合物给体组合的本体异质结太阳能电池与基于ITIC的器件(8.4%)相比,功率转换效率显著提高,达到13.3%。这项工作揭示了三氟甲基化在高效光伏受体材料设计中的巨大潜力。