Suppr超能文献

自旋控制的无机/有机界面上的电荷复合途径。

Spin-Controlled Charge-Recombination Pathways across the Inorganic/Organic Interface.

机构信息

State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.

State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, Dalian University of Technology, Dalian, Liaoning 116024, China.

出版信息

J Am Chem Soc. 2020 Mar 11;142(10):4723-4731. doi: 10.1021/jacs.9b12724. Epub 2020 Mar 1.

Abstract

Charge transfer and recombination across the inorganic/organic interface in nanocrystal or quantum dot (QD)-molecule hybrid materials have been extensively studied. Principles of controlling charge transfer and recombination via energetics and electronic coupling have been established. However, the use of electron spin to control transfer and recombination pathways in such systems remains relatively underexplored. Here we use CdS QD-alizarin (AZ) as a model system to demonstrate this principle. Using time-resolved spectroscopy, we found that the charge-separated states (QD-AZ) created by selectively exciting AZ molecules mostly recombined to regenerate ground-state complexes, whereas apparently the "same" charge separated states created by exciting QDs recombined to produce AZ molecular triplet states. Such a difference can be traced to the distinct spin configurations between excited QDs (QD*, with an ill-defined spin) and AZ (AZ*, spin singlet) and the asymmetric electron and hole spin-flip rates in II-VI group QDs. The transferability of such a principle was confirmed by similar observations obtained for CdS QD-tetracene complexes. Opening an avenue for controlling charge transfer and recombination pathways via electron spin is potentially important for applications such as artificial photosynthesis.

摘要

在纳米晶体或量子点 (QD)-分子杂化材料中,无机/有机界面处的电荷转移和复合得到了广泛研究。已经建立了通过能量学和电子耦合控制电荷转移和复合的原理。然而,利用电子自旋来控制此类系统中的转移和复合途径的应用仍相对较少。在这里,我们使用 CdS QD-茜素(AZ)作为模型系统来证明这一原理。使用时间分辨光谱学,我们发现通过选择性激发 AZ 分子创建的电荷分离态(QD-AZ)主要重新组合以再生基态配合物,而显然通过激发 QD 创建的“相同”电荷分离态重新组合以产生 AZ 分子三重态。这种差异可以追溯到激发态 QD(QD*,具有定义不明确的自旋)和 AZ(AZ*,单重态自旋)之间的不同自旋构型,以及 II-VI 族 QD 中电子和空穴自旋翻转率的不对称性。通过对 CdS QD-并四苯配合物获得的类似观察结果,证实了这种原理的可转移性。通过电子自旋控制电荷转移和复合途径的途径为人工光合作用等应用打开了大门。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验