Tang Zhenyu, Bryan Nicholas J, Li Dingzeyu, Langlois Timothy R, Manocha Dinesh
IEEE Trans Vis Comput Graph. 2020 May;26(5):1991-2001. doi: 10.1109/TVCG.2020.2973058. Epub 2020 Feb 13.
We present a new method to capture the acoustic characteristics of real-world rooms using commodity devices, and use the captured characteristics to generate similar sounding sources with virtual models. Given the captured audio and an approximate geometric model of a real-world room, we present a novel learning-based method to estimate its acoustic material properties. Our approach is based on deep neural networks that estimate the reverberation time and equalization of the room from recorded audio. These estimates are used to compute material properties related to room reverberation using a novel material optimization objective. We use the estimated acoustic material characteristics for audio rendering using interactive geometric sound propagation and highlight the performance on many real-world scenarios. We also perform a user study to evaluate the perceptual similarity between the recorded sounds and our rendered audio.
我们提出了一种使用商用设备捕捉真实世界房间声学特性的新方法,并利用捕捉到的特性通过虚拟模型生成具有相似音效的声源。给定捕捉到的音频和真实世界房间的近似几何模型,我们提出了一种基于学习的新颖方法来估计其声学材料属性。我们的方法基于深度神经网络,该网络从录制的音频中估计房间的混响时间和均衡。这些估计值用于通过一种新颖的材料优化目标来计算与房间混响相关的材料属性。我们将估计出的声学材料特性用于使用交互式几何声音传播的音频渲染,并突出了在许多真实世界场景中的性能。我们还进行了一项用户研究,以评估录制声音与我们渲染音频之间的感知相似度。