Suppr超能文献

一种改进的 3-in-1 融合蛋白相似性度量:在无阈值枢纽检测中的应用。

A Refined 3-in-1 Fused Protein Similarity Measure: Application in Threshold-Free Hub Detection.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2022 Jan-Feb;19(1):192-206. doi: 10.1109/TCBB.2020.2973563. Epub 2022 Feb 3.

Abstract

An exhaustive literature survey shows that finding protein/gene similarity is an important step towards solving widespread bioinformatics problems, such as predicting protein-protein interactions, analyzing Protein-Protein Interaction Networks (PPINs), gene prioritization, and disease gene/protein detection. In this article, we have proposed an improved 3-in-1 fused protein similarity measure called FuSim-II. It is built upon combining the weighted average of biological knowledge extracted from three potential genomic/ proteomic resources such as Gene Ontology (GO), PPIN, and protein sequence. Furthermore, we have shown the application of the proposed measure in detecting potential hub-proteins from a given PPIN. Aiming that, we have proposed a multi-objective clustering-based protein hub detection framework with FuSim-II working as the underlying proximity measure. The PPINs of H. Sapiens and M. Musculus organisms are chosen for experimental purposes. Unlike most of the existing hub-detection methods, the proposed technique does not require to follow any protein degree cut-off or threshold to define hubs. A thorough assessment of efficiency between proposed and existing eight protein similarity measures along with eight single/multi-objective clustering methods has been carried out. Internal cluster validity indices like Silhouette and Davies Bouldin (DB) are deployed to accomplish analytical study. Also, a comparative performance analysis between proposed and five existing hub-proteins detection algorithms is conducted through the enrichment of essentiality study. The reported results show the improved performance of FuSim-II over existing protein similarity measures in terms of identifying functionally related proteins as well as relevant hub-proteins. Supplementary material is available at http://csse.szu.edu.cn/staff/cuilz/eng/index.html.

摘要

详尽的文献调查表明,寻找蛋白质/基因相似性是解决广泛存在的生物信息学问题的重要步骤,例如预测蛋白质-蛋白质相互作用、分析蛋白质-蛋白质相互作用网络 (PPIN)、基因优先级和疾病基因/蛋白质检测。在本文中,我们提出了一种改进的三合一融合蛋白质相似性度量方法,称为 FuSim-II。它是通过结合从三个潜在的基因组/蛋白质资源(如基因本体论 (GO)、PPIN 和蛋白质序列)中提取的生物知识的加权平均值来构建的。此外,我们展示了所提出的度量在从给定的 PPIN 中检测潜在的枢纽蛋白中的应用。为此,我们提出了一种基于多目标聚类的蛋白质枢纽检测框架,使用 FuSim-II 作为底层接近度度量。选择 H. Sapiens 和 M. Musculus 生物体的 PPIN 用于实验目的。与大多数现有的枢纽检测方法不同,所提出的技术不需要遵循任何蛋白质度截止值或阈值来定义枢纽。对所提出的和现有的八种蛋白质相似性度量以及八种单/多目标聚类方法进行了效率的全面评估。内部聚类有效性指标,如轮廓和 Davies Bouldin (DB),用于完成分析研究。此外,还通过重要性研究的富集,对所提出的和五种现有的枢纽蛋白检测算法之间的比较性能分析进行了研究。报告的结果表明,FuSim-II 在识别功能相关蛋白质和相关枢纽蛋白方面优于现有的蛋白质相似性度量。补充材料可在 http://csse.szu.edu.cn/staff/cuilz/eng/index.html 获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验