Gallet Basile, Ferrari Raffaele
Service de Physique de l'Etat Condensé, Commissariat à l'Energie Atomique Saclay, CNRS UMR 3680, Université Paris-Saclay, 91191 Gif-sur-Yvette, France;
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4491-4497. doi: 10.1073/pnas.1916272117. Epub 2020 Feb 18.
The mean state of the atmosphere and ocean is set through a balance between external forcing (radiation, winds, heat and freshwater fluxes) and the emergent turbulence, which transfers energy to dissipative structures. The forcing gives rise to jets in the atmosphere and currents in the ocean, which spontaneously develop turbulent eddies through the baroclinic instability. A critical step in the development of a theory of climate is to properly include the eddy-induced turbulent transport of properties like heat, moisture, and carbon. In the linear stages, baroclinic instability generates flow structures at the Rossby deformation radius, a length scale of order 1,000 km in the atmosphere and 100 km in the ocean, smaller than the planetary scale and the typical extent of ocean basins, respectively. There is, therefore, a separation of scales between the large-scale gradient of properties like temperature and the smaller eddies that advect it randomly, inducing effective diffusion. Numerical solutions show that such scale separation remains in the strongly nonlinear turbulent regime, provided there is sufficient drag at the bottom of the atmosphere and ocean. We compute the scaling laws governing the eddy-driven transport associated with baroclinic turbulence. First, we provide a theoretical underpinning for empirical scaling laws reported in previous studies, for different formulations of the bottom drag law. Second, these scaling laws are shown to provide an important first step toward an accurate local closure to predict the impact of baroclinic turbulence in setting the large-scale temperature profiles in the atmosphere and ocean.
大气和海洋的平均状态是通过外部强迫(辐射、风、热通量和淡水通量)与出现的湍流之间的平衡来设定的,湍流将能量传递到耗散结构中。强迫作用在大气中产生急流,在海洋中产生洋流,它们通过斜压不稳定自发地发展出湍流涡旋。气候理论发展中的一个关键步骤是恰当地纳入涡旋引起的诸如热量、水分和碳等属性的湍流输送。在线性阶段,斜压不稳定在罗斯比变形半径处产生流动结构,该长度尺度在大气中约为1000公里,在海洋中约为100公里,分别小于行星尺度和海洋盆地的典型范围。因此,在诸如温度等属性的大尺度梯度与随机平流它的较小涡旋之间存在尺度分离,从而引发有效扩散。数值解表明,只要大气和海洋底部有足够的阻力,这种尺度分离在强非线性湍流状态下仍然存在。我们计算了控制与斜压湍流相关的涡旋驱动输送的标度律。首先,对于底部阻力定律的不同公式,我们为先前研究中报道的经验标度律提供了理论基础。其次,这些标度律被证明是朝着准确的局部闭合迈出的重要第一步,以预测斜压湍流在设定大气和海洋大尺度温度剖面方面的影响。