Kang Qiaoling, Li Mengyuan, Wang Zengrui, Lu Qingyi, Gao Feng
State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
Department of Materials Science and Engineering, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China.
Nanoscale. 2020 Feb 27;12(8):5159-5169. doi: 10.1039/c9nr10236a.
Non-precious, stable and efficient catalysts for the pH-universal hydrogen evolution reaction (HER) are highly desirable to meet the vast energy demands. Herein, we report a facile and scalable strategy using agaric as a precursor to construct a Mo2C-based HER electrocatalyst consisting of ultrafine Mo2C nanoparticles embedded within biomass-derived 3D N-doped carbon nanorod arrays@nanosheet networks (Mo2C@N-CANs). This electrocatalyst is highly active for the pH-universal hydrogen evolution reaction and requires overpotentials of only 82 mV, 100 mV and 350 mV to drive a current density of -10 mA cm-2 in acidic, alkaline and neutral media, exhibiting stable operation for 3000 cycles and 24 h long-term stability. Theoretical calculations indicate that coupling Mo2C, N and CANs into a hybrid results in producing wrinkles on carbon nanolayers, which changes the direction of sp2 hybrid orbitals to push the Gibbs free energy toward zero. This result reinforces the presence of a synergy effect between Mo2C and N-CANs in Mo2C@N-CAN catalysts, which leads to their impressive HER performances.
为满足巨大的能源需求,非常需要用于pH通用析氢反应(HER)的非贵金属、稳定且高效的催化剂。在此,我们报道了一种简便且可扩展的策略,使用木耳作为前驱体来构建一种基于Mo2C的HER电催化剂,该催化剂由嵌入生物质衍生的3D N掺杂碳纳米棒阵列@纳米片网络(Mo2C@N-CANs)中的超细Mo2C纳米颗粒组成。这种电催化剂对pH通用析氢反应具有高活性,在酸性、碱性和中性介质中驱动电流密度为-10 mA cm-2时仅需要82 mV、100 mV和350 mV的过电位,表现出3000次循环的稳定运行和24小时的长期稳定性。理论计算表明,将Mo2C、N和CANs耦合形成杂化物会导致碳纳米层上产生皱纹,这改变了sp2杂化轨道的方向,使吉布斯自由能趋向于零。这一结果强化了Mo2C@N-CAN催化剂中Mo2C与N-CANs之间协同效应的存在,这导致了它们令人印象深刻的HER性能。