Makhlooghiazad Faezeh, Sharma Manish, Zhang Zhizhen, Howlett Patrick C, Forsyth Maria, Nazar Linda F
Department of Chemistry and the Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
Institute for Frontier Materials, Deakin University Burwood Campus, 221 Burwood Highway, Burwood, VIC 3125, Australia.
J Phys Chem Lett. 2020 Mar 19;11(6):2092-2100. doi: 10.1021/acs.jpclett.0c00149. Epub 2020 Mar 3.
Sodium batteries have emerged as a promising alternative for large-scale energy storage applications due to the low cost and high abundance of sodium. Sodium batteries require safe, high-voltage, and cost-effective electrolytes and cathode materials for their practical applications to be realized. In the present study, Na metal cells with a mixed-phase electrolyte comprising a high concentration of Na salt in an organic ionic plastic crystal (OIPC), namely, triisobutylmethylphosphonium bis(fluorosulfonyl)imide, are investigated-coupled with either a sodium vanadium phosphate-carbon composite (NVP/C) or a sodium iron pyrophosphate (NFpP) cathode. The performance of the Na/NVP/C and Na/NFpP cells are evaluated using cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic cycling at 60 °C and room temperature. The results reported herein indicate the performance improvement in terms of cycling stability, with high Coulombic efficiency at 60 °C granted by the OIPC and ionic liquid mixtures, compared to a conventional organic solvent electrolyte.
由于钠的低成本和高丰度,钠电池已成为大规模储能应用的一种有前景的替代方案。钠电池在实际应用中需要安全、高压且具有成本效益的电解质和阴极材料。在本研究中,对具有混合相电解质的钠金属电池进行了研究,该电解质由有机离子塑性晶体(OIPC)中的高浓度钠盐组成,即三异丁基甲基鏻双(氟磺酰)亚胺,并与磷酸钒钠-碳复合材料(NVP/C)或焦磷酸铁钠(NFpP)阴极耦合。使用循环伏安法、电化学阻抗谱以及在60°C和室温下的恒电流循环来评估Na/NVP/C和Na/NFpP电池的性能。本文报道的结果表明,与传统有机溶剂电解质相比,OIPC和离子液体混合物在60°C下具有高库仑效率,从而在循环稳定性方面提高了性能。