文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

阿片类药物通过脑干的两个小区域抑制呼吸。

Opioids depress breathing through two small brainstem sites.

作者信息

Bachmutsky Iris, Wei Xin Paul, Kish Eszter, Yackle Kevin

机构信息

Department of Physiology, University of California-San Francisco, San Francisco, United States.

Neuroscience Graduate Program, University of California-San Francisco, San Francisco, United States.

出版信息

Elife. 2020 Feb 19;9:e52694. doi: 10.7554/eLife.52694.


DOI:10.7554/eLife.52694
PMID:32073401
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7077984/
Abstract

The rates of opioid overdose in the United States quadrupled between 1999 and 2017, reaching a staggering 130 deaths per day. This health epidemic demands innovative solutions that require uncovering the key brain areas and cell types mediating the cause of overdose- opioid-induced respiratory depression. Here, we identify two primary changes to murine breathing after administering opioids. These changes implicate the brainstem's breathing circuitry which we confirm by locally eliminating the µ-Opioid receptor. We find the critical brain site is the preBötzinger Complex, where the breathing rhythm originates, and use genetic tools to reveal that just 70-140 neurons in this region are responsible for its sensitivity to opioids. Future characterization of these neurons may lead to novel therapies that prevent respiratory depression while sparing analgesia.

摘要

1999年至2017年间,美国阿片类药物过量使用率增长了四倍,达到了惊人的每天130例死亡。这种健康危机需要创新解决方案,这就要求揭示介导过量使用阿片类药物导致呼吸抑制的关键脑区和细胞类型。在这里,我们确定了给小鼠使用阿片类药物后呼吸的两个主要变化。这些变化涉及脑干呼吸回路,我们通过局部消除μ-阿片受体来证实这一点。我们发现关键脑区是前包钦格复合体,呼吸节律起源于此,并使用基因工具揭示该区域仅70 - 140个神经元就决定了其对阿片类药物的敏感性。对这些神经元的进一步表征可能会带来新的治疗方法,既能预防呼吸抑制,又能保留镇痛效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/8b0ddfb6edaa/elife-52694-resp-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/8a19249ea58d/elife-52694-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/9d9e2550c7c9/elife-52694-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/bcee10625c59/elife-52694-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/2ebdea2dca07/elife-52694-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/bc799de0a4c5/elife-52694-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/aec12f4f5e91/elife-52694-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/9773a99d2b13/elife-52694-fig2-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/d0212880b118/elife-52694-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/6cb6e0a6838c/elife-52694-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/72948a3ddd8b/elife-52694-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/bc5d8fe33e06/elife-52694-fig3-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/89e64cd575a9/elife-52694-fig3-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/a42de8498233/elife-52694-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/851cd49e3cd3/elife-52694-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/2d74ba294537/elife-52694-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/2d67e47ef875/elife-52694-fig4-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/8c93cd30b567/elife-52694-resp-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/8b0ddfb6edaa/elife-52694-resp-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/8a19249ea58d/elife-52694-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/9d9e2550c7c9/elife-52694-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/bcee10625c59/elife-52694-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/2ebdea2dca07/elife-52694-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/bc799de0a4c5/elife-52694-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/aec12f4f5e91/elife-52694-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/9773a99d2b13/elife-52694-fig2-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/d0212880b118/elife-52694-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/6cb6e0a6838c/elife-52694-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/72948a3ddd8b/elife-52694-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/bc5d8fe33e06/elife-52694-fig3-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/89e64cd575a9/elife-52694-fig3-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/a42de8498233/elife-52694-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/851cd49e3cd3/elife-52694-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/2d74ba294537/elife-52694-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/2d67e47ef875/elife-52694-fig4-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/8c93cd30b567/elife-52694-resp-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/410e/7077984/8b0ddfb6edaa/elife-52694-resp-fig2.jpg

相似文献

[1]
Opioids depress breathing through two small brainstem sites.

Elife. 2020-2-19

[2]
ß-arrestin 2 germline knockout does not attenuate opioid respiratory depression.

Elife. 2021-5-18

[3]
Differential impact of two critical respiratory centres in opioid-induced respiratory depression in awake mice.

J Physiol. 2020-1

[4]
Respiratory depression and analgesia by opioid drugs in freely behaving larval zebrafish.

Elife. 2021-3-15

[5]
PreBotzinger complex neurokinin-1 receptor-expressing neurons mediate opioid-induced respiratory depression.

J Neurosci. 2011-1-26

[6]
Fentanyl-Induced Respiratory Depression and Locomotor Hyperactivity Are Mediated by μ-Opioid Receptors Expressed in Somatostatin-Negative Neurons.

eNeuro. 2023-6

[7]
Opioids and the control of respiration.

Br J Anaesth. 2008-6

[8]
Non-analgesic effects of opioids: opioid-induced respiratory depression.

Curr Pharm Des. 2012

[9]
Anatomical distribution of µ-opioid receptors, neurokinin-1 receptors, and vesicular glutamate transporter 2 in the mouse brainstem respiratory network.

J Neurophysiol. 2024-7-1

[10]
The pathophysiology of opioid-induced respiratory depression.

Handb Clin Neurol. 2022

引用本文的文献

[1]
Asymmetric neuromodulation in the respiratory network contributes to rhythm and pattern generation.

Front Neural Circuits. 2025-7-8

[2]
Sudden Death Induced by Acute Inhalation of Aerosolized Carfentanil.

Arch Clin Biomed Res. 2025

[3]
Divergent ventilatory responses during opioid-induced respiratory depression in response to repeated fentanyl use.

Am J Physiol Lung Cell Mol Physiol. 2025-7-1

[4]
Peripheral opioid receptor antagonism alleviates fentanyl-induced cardiorespiratory depression and is devoid of aversive behavior.

Elife. 2025-4-1

[5]
CB cannabinoid receptor agonists induce acute respiratory depression in awake mice.

Pharmacol Res. 2025-4

[6]
Microphysiological system to address the opioid crisis: A novel multi-organ model of acute opioid overdose and recovery.

Curr Res Toxicol. 2024-12-18

[7]
Modeling Insights into Potential Mechanisms of Opioid-Induced Respiratory Depression within Medullary and Pontine Networks.

bioRxiv. 2024-12-21

[8]
Asymmetric neuromodulation in the respiratory network contributes to rhythm and pattern generation.

bioRxiv. 2024-11-11

[9]
Endomorphin-2 (Endo2) and substance P (SubP) co-application attenuates SubP-induced excitation and alters frequency plasticity in neonatal rat in vitro preparations.

Respir Physiol Neurobiol. 2025-1

[10]
Xylazine Exacerbates Fentanyl-Induced Respiratory Depression and Bradycardia.

bioRxiv. 2024-8-19

本文引用的文献

[1]
Differential impact of two critical respiratory centres in opioid-induced respiratory depression in awake mice.

J Physiol. 2020-1

[2]
Biophysical mechanisms in the mammalian respiratory oscillator re-examined with a new data-driven computational model.

Elife. 2019-3-25

[3]
Drug and Opioid-Involved Overdose Deaths - United States, 2013-2017.

MMWR Morb Mortal Wkly Rep. 2018-1-4

[4]
The parafacial respiratory group and the control of active expiration.

Respir Physiol Neurobiol. 2018-6-19

[5]
The novel μ-opioid receptor agonist PZM21 depresses respiration and induces tolerance to antinociception.

Br J Pharmacol. 2018-5-14

[6]
Defining preBötzinger Complex Rhythm- and Pattern-Generating Neural Microcircuits In Vivo.

Neuron. 2016-8-3

[7]
Interactions between respiratory oscillators in adult rats.

Elife. 2016-6-14

[8]
Voltage-Dependent Rhythmogenic Property of Respiratory Pre-Bötzinger Complex Glutamatergic, Dbx1-Derived, and Somatostatin-Expressing Neuron Populations Revealed by Graded Optogenetic Inhibition.

eNeuro. 2016-6-3

[9]
Two Pairs of ON and OFF Retinal Ganglion Cells Are Defined by Intersectional Patterns of Transcription Factor Expression.

Cell Rep. 2016-5-31

[10]
Increases in Drug and Opioid Overdose Deaths--United States, 2000-2014.

MMWR Morb Mortal Wkly Rep. 2016-1-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索