Suppr超能文献

Disposition and metabolism of [14C]-amezinium metilsulfate in rats.

作者信息

Nambu K, Yoshida K, Kagemoto A, Matsumoto K, Miyazaki H, Hashimoto M, Esumi Y, Jin Y, Gunji S, Iwabuchi M

机构信息

Research Laboratories, Dainippon Pharmaceutical Co., Ltd., Osaka, Japan.

出版信息

Arzneimittelforschung. 1988 Jul;38(7):909-18.

PMID:3207436
Abstract

Disposition and metabolism of [14C]-amezinium metilsulfate (4-amino-6-methoxy-1-phenylpyridazinium methylsulfate, Risumic) were systematically studied in rats after intravenous (5 mg/kg) or oral (20, 100 mg/kg) administration. After oral administration at 20 mg/kg, blood level reached the maximum (Cmax) of 0.65 microgram eq/ml at 3 h (tmax) and decreased with t1/2 of 8.1 h. Levels in plasma and most tissues elevated to the Cmax at 3 h. The liver level was the highest (61 times as high as plasma level) of all examined tissues. Most tissue levels decreased thereafter essentially in parallel with plasma levels. The findings by whole-body autoradiography essentially agreed with those by radiometry. In lactating rats, milk levels were virtually similar to plasma levels. [14C]-Amezinium metilsulfate radioactivity in fetus and fetal blood was around 0.3 microgram eq/g, being about 1/10 level of maternal plasma level. About 24, 72 and 42% were excreted in urine, feces and bile, respectively. Re-absorption of biliary metabolites accounted for about 31%, being about 13% of orally given [14C]-amezinium metilsulfate. Plasma and aorta contained unchanged amezinium and glucuronide of hydroxyl amezinium MIII. In the brain, the major metabolite was O-demethyl amezinium MV and unchanged drug was not detected. Urinary metabolites were largely MIII glucuronide and the unchanged drug. Biliary metabolite was found composed mostly from MIII glucuronide. In feces, MIII and the unchanged amezinium were found. MIII and its glucuronide were novel metabolites which were identified by thin-layer chromatography and mass spectrometry.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验