Mu Yizhu, Maharjan Yunash, Dutta Raghbendra Kumar, Kim Hyunsoo, Wei Xiaofan, Kim Jin Hwi, Kim Donghyun, Park Channy, Park Raekil
Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, 61005, Republic of Korea.
Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, 61005, Republic of Korea.
Biochem Biophys Res Commun. 2020 Feb 16. doi: 10.1016/j.bbrc.2020.02.051.
Peroxisomes are metabolically active oxygen demanding organelles with a high abundance of oxidases making it vulnerable to low oxygen levels such as hypoxic conditions. However, the exact mechanism of peroxisome degradation in hypoxic condition remains elusive. In order to study the mechanism of peroxisome degradation in hypoxic condition, we use Dimethyloxaloylglycine (DMOG), a cell-permeable prolyl-4-hydroxylase inhibitor, which mimics hypoxic condition by stabilizing hypoxia-inducible factors. Here we report that DMOG degraded peroxisomes by selectively activating pexophagy in a HIF-2α dependent manner involving autophagy receptor p62. Furthermore, DMOG not only increased peroxisome turnover by pexophagy but also reduced HIF-2α dependent peroxisome proliferation at the transcriptional level. Taken together, our data suggest that hypoxic condition is a negative regulator for peroxisome abundance through increasing pexophagy and decreasing peroxisome proliferation in HIF-2α dependent manner.
过氧化物酶体是代谢活跃且需要氧气的细胞器,富含大量氧化酶,这使其在低氧水平(如缺氧条件)下容易受到影响。然而,缺氧条件下过氧化物酶体降解的确切机制仍不清楚。为了研究缺氧条件下过氧化物酶体降解的机制,我们使用了二甲基乙二酰甘氨酸(DMOG),一种可透过细胞的脯氨酰-4-羟化酶抑制剂,它通过稳定缺氧诱导因子来模拟缺氧条件。在此我们报告,DMOG通过以依赖于HIF-2α且涉及自噬受体p62的方式选择性激活pexophagy来降解过氧化物酶体。此外,DMOG不仅通过pexophagy增加了过氧化物酶体的周转,还在转录水平上减少了依赖于HIF-2α的过氧化物酶体增殖。综上所述,我们的数据表明,缺氧条件是过氧化物酶体丰度的负调节因子,它通过以依赖于HIF-2α的方式增加pexophagy和减少过氧化物酶体增殖来实现。