Suppr超能文献

压电热弹性机电谐振器的非线性动态稳定性

Nonlinear dynamic stability of piezoelectric thermoelastic electromechanical resonators.

作者信息

SoltanRezaee Masoud, Bodaghi Mahdi

机构信息

Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran.

Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.

出版信息

Sci Rep. 2020 Feb 19;10(1):2982. doi: 10.1038/s41598-020-59836-0.

Abstract

This research work deals with analyzing instability and nonlinear behaviors of piezoelectric thermal nano-bridges. An adjustable thermo-elastic model with the ability to control stability conditions is developed to examine the system behavior at different temperatures. To increase the performance range and improve system characteristics, a piezovoltage is applied and a spring is connected to the sliding end of the deformable beam as design parameters. The partial differential equations (PDEs) are derived using the extended Hamilton's principle and Galerkin decomposition is implemented to discretize the nonlinear equations, which are solved via a computational method called the step-by-step linearization method (SSLM). To improve the accuracy of the solution, the number of mode shapes and the size of voltage increments are analyzed and sufficient values are employed in the solution. The validity of the formulation and solution method is verified with experimental, analytical, and numerical data for several cases. Finally, the vibration and eigenvalue problem of the actuated nano-manipulator subjected to electrostatic and Casimir attractions are investigated. It is concluded that the fringing-fields correction changes the system frequency, static equilibrium, and pull-in characteristics significantly. The results are expected to be instrumental in the analysis, design, and operation of numerous adjustable advanced nano-systems.

摘要

本研究工作致力于分析压电热纳米桥的不稳定性和非线性行为。开发了一种具有控制稳定性条件能力的可调热弹性模型,以研究系统在不同温度下的行为。为了扩大性能范围并改善系统特性,将施加压电电压,并将一个弹簧连接到可变形梁的滑动端作为设计参数。使用扩展哈密顿原理推导偏微分方程(PDEs),并采用伽辽金分解对非线性方程进行离散化,通过一种称为逐步线性化方法(SSLM)的计算方法求解这些方程。为了提高解的精度,分析了振型数量和电压增量大小,并在求解中采用了足够的值。通过多种情况下的实验、分析和数值数据验证了公式和求解方法的有效性。最后,研究了受静电和卡西米尔吸引力作用的驱动纳米操纵器的振动和特征值问题。得出的结论是,边缘场校正会显著改变系统频率、静态平衡和拉入特性。预期这些结果将有助于众多可调先进纳米系统的分析、设计和运行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e832/7031535/cbca989be8c9/41598_2020_59836_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验