Suppr超能文献

受机械冲击和温克勒-帕斯特纳克基础作用的压电能量收集装置非线性动力学的近似解

Approximate Solution to Nonlinear Dynamics of a Piezoelectric Energy Harvesting Device Subject to Mechanical Impact and Winkler-Pasternak Foundation.

作者信息

Marinca Vasile, Herisanu Nicolae, Marinca Bogdan

机构信息

Department of Mechanics and Strength of Materials, University Politehnica Timisoara, 300222 Timisoara, Romania.

Center for Advanced and Fundamental Technical Research, Romanian Academy, 300222 Timisoara, Romania.

出版信息

Materials (Basel). 2025 Mar 27;18(7):1502. doi: 10.3390/ma18071502.

Abstract

To explore the nonlinear dynamics of a piezoelectric energy harvesting device, we consider the simultaneous parametric and external excitations. Based on Bernoulli-Euler beam theory, a new dynamic model is proposed taking into account the curvature of the beam, geometric and electro-mechanical coupling nonlinearities, and damping nonlinearity, with inextensible deformation. The system is discretized by using the Galerkin-Bubnov procedure and then is investigated by the optimal auxiliary functions method. Explicit analytical expressions of the approximate solutions are presented for a complex problem near the primary resonance. The main novelty of our approach relies on the presence of different auxiliary functions, the involvement of a few convergence-control parameters, the construction of the initial and first iteration, and much freedom in selecting the procedure for obtaining the optimal values of the convergence-control parameters. Our procedure proves to be very efficient, simple, easy to implement, and very accurate to solve a complicated nonlinear dynamical system. To study the stability of equilibrium points, the Routh-Hurwitz criterion is adopted. The Hopf and saddle node bifurcations are studied. Global stability is analyzed by the Lyapunov function, La Salle's invariance principle, and Pontryagin's principle with respect to the control variables.

摘要

为了探究压电能量收集装置的非线性动力学特性,我们考虑了同时存在的参激和外激。基于伯努利 - 欧拉梁理论,提出了一个新的动力学模型,该模型考虑了梁的曲率、几何和机电耦合非线性以及阻尼非线性,且变形不可伸长。通过伽辽金 - 布勃诺夫方法对系统进行离散化,然后采用最优辅助函数法进行研究。针对主共振附近的复杂问题,给出了近似解的显式解析表达式。我们方法的主要新颖之处在于存在不同的辅助函数、涉及几个收敛控制参数、初始和首次迭代的构建以及在选择获得收敛控制参数最优值的过程中有很大的自由度。我们的方法被证明非常有效、简单、易于实现,并且在求解复杂非线性动力系统时非常精确。为了研究平衡点的稳定性,采用了劳斯 - 赫尔维茨判据。研究了霍普夫分岔和鞍结分岔。通过李雅普诺夫函数、拉萨尔不变性原理以及关于控制变量的庞特里亚金原理分析了全局稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ccc/11989827/acbed74a4ef6/materials-18-01502-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验