Qiu Hui, Cheng Hengyang, Meng Jinku, Wu Guan, Chen Su
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University (formerly Nanjing University of Technology), Nanjing, 210009, P. R. China.
Angew Chem Int Ed Engl. 2020 May 11;59(20):7934-7943. doi: 10.1002/anie.202000951. Epub 2020 Mar 13.
Chemical architectures with an ordered porous backbone and high charge transfer are significant for fiber-shaped supercapacitors (FSCs). However, owing to the sluggish ion kinetic diffusion and storage in compacted fibers, achieving high energy density remains a challenge. An innovative magnetothermal microfluidic method is now proposed to design hierarchical carbon polyhedrons/holey graphene (CP/HG) core-shell microfibers. Owing to highly magnetothermal etching and microfluidic reactions, the CP/HG fibers maintain an open inner-linked ionic pathway, large specific surface area, and moderate nitrogen active site, facilitating more rapid ionic dynamic transportation and accommodation. The CP/HG FSCs show an ultrahigh energy density (335.8 μWh cm ) and large areal capacitance (2760 mF cm ). A self-powered endurance application with the integration of chip-based FSCs is designed to profoundly drive the durable motions of an electric car and walking robot.
具有有序多孔骨架和高电荷转移的化学结构对于纤维状超级电容器(FSC)具有重要意义。然而,由于离子在紧密纤维中的动力学扩散和存储缓慢,实现高能量密度仍然是一个挑战。现在提出了一种创新的磁热微流体方法来设计分级碳多面体/多孔石墨烯(CP/HG)核壳微纤维。由于高度的磁热蚀刻和微流体反应,CP/HG纤维保持开放的内部连接离子通道、大比表面积和适度的氮活性位点,有利于更快速的离子动态传输和容纳。CP/HG FSC显示出超高能量密度(335.8 μWh cm)和大面电容(2760 mF cm)。设计了一种集成基于芯片的FSC的自供电耐久性应用,以深刻驱动电动汽车和步行机器人的持久运动。