Suppr超能文献

微自噬调节蛋白酶体稳态。

Microautophagy regulates proteasome homeostasis.

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.

Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA.

出版信息

Curr Genet. 2020 Aug;66(4):683-687. doi: 10.1007/s00294-020-01059-x. Epub 2020 Feb 20.

Abstract

Proteasomes are highly abundant protein complexes that are responsible for most regulated protein degradation in cells under favorable growth conditions. When yeast cells are under nutritional stress, most proteasomes exit the nucleus and either accumulate in cytoplasmic condensates called proteasome storage granules (PSGs) or are directed to the vacuole by autophagy. Nitrogen starvation does not cause PSG formation but leads to degradation of proteasomes through the classical macroautophagy pathway. By contrast, carbon starvation or extended incubation in stationary phase results in both PSG formation and macroautophagy of proteasomes. Unexpectedly, we found that glucose limitation also causes proteasomes to be taken up directly into vacuoles by a microautophagy mechanism. Macro- and micro-autophagy occur in parallel in glucose-starved cells, and microautophagy appears biased toward aberrant or inactive proteasomes, leaving functional proteasomes to accumulate in PSGs. PSGs dissolve and proteasomes remobilize to the nucleus within minutes after glucose refeeding. We showed that AMP-activated protein kinase (AMPK) and endosomal-sorting-complex-required-for-transport (ESCRT) factors are required for proteasome microautophagy and also impact PSG dissipation and nuclear reimport of proteasomes after glucose refeeding. The insoluble protein deposit (IPOD) compartment provides an alternative means of proteasome homeostasis, including when microautophagy is impaired. Our findings reveal a surprising diversity of mechanisms for proteasome quality and quantity control during starvation. A mechanistic understanding of the AMPK-regulated ESCRT-mediated microautophagy pathway could provide new avenues for manipulating proteasome homeostasis and treating human disease.

摘要

蛋白酶体是高度丰富的蛋白质复合物,负责在有利的生长条件下细胞中大多数受调控的蛋白质降解。当酵母细胞受到营养压力时,大多数蛋白酶体从核中移出,要么积累在称为蛋白酶体储存颗粒(PSG)的细胞质凝聚物中,要么通过自噬被导向液泡。氮饥饿不会导致 PSG 形成,但会通过经典的巨自噬途径导致蛋白酶体降解。相比之下,碳饥饿或延长停滞期培养会导致 PSG 形成和蛋白酶体的巨自噬。出乎意料的是,我们发现葡萄糖限制也会导致蛋白酶体通过微自噬机制直接被摄取到液泡中。在葡萄糖饥饿的细胞中,巨自噬和微自噬同时发生,并且微自噬似乎偏向于异常或无活性的蛋白酶体,使功能正常的蛋白酶体在 PSG 中积累。PSG 在几分钟内溶解,蛋白酶体重新移动到核中,在重新喂食葡萄糖后。我们表明,AMP 激活的蛋白激酶(AMPK)和内体分选复合物-运输所需(ESCRT)因子是蛋白酶体微自噬所必需的,并且还影响 PSG 消散和葡萄糖重新喂养后蛋白酶体向核内的重新输入。不可溶性蛋白沉积(IPOD)隔室提供了一种替代的蛋白酶体动态平衡的方法,包括微自噬受损时。我们的研究结果揭示了在饥饿期间蛋白酶体质量和数量控制的惊人多样性的机制。对 AMPK 调节的 ESCRT 介导的微自噬途径的机制理解可能为操纵蛋白酶体动态平衡和治疗人类疾病提供新的途径。

相似文献

1
Microautophagy regulates proteasome homeostasis.微自噬调节蛋白酶体稳态。
Curr Genet. 2020 Aug;66(4):683-687. doi: 10.1007/s00294-020-01059-x. Epub 2020 Feb 20.
8
The paradox of proteasome granules.蛋白酶体颗粒的悖论。
Curr Genet. 2018 Feb;64(1):137-140. doi: 10.1007/s00294-017-0739-y. Epub 2017 Aug 23.

引用本文的文献

2
Proteasome dynamics in response to metabolic changes.蛋白酶体对代谢变化的响应动力学。
Front Cell Dev Biol. 2025 Mar 3;13:1523382. doi: 10.3389/fcell.2025.1523382. eCollection 2025.
7
10
Autophagy in gastrointestinal cancers.胃肠道癌症中的自噬
Front Oncol. 2022 Aug 26;12:975758. doi: 10.3389/fonc.2022.975758. eCollection 2022.

本文引用的文献

9
Cargo recognition and degradation by selective autophagy.选择性自噬对货物的识别和降解。
Nat Cell Biol. 2018 Mar;20(3):233-242. doi: 10.1038/s41556-018-0037-z. Epub 2018 Feb 23.
10
Stress response factors drive regrowth of quiescent cells.应激反应因子驱动静止细胞的再生。
Curr Genet. 2018 Aug;64(4):807-810. doi: 10.1007/s00294-018-0813-0. Epub 2018 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验