Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614, Poznań, Poland.
Photosynth Res. 2020 Apr;144(1):1-12. doi: 10.1007/s11120-020-00722-1. Epub 2020 Feb 20.
We demonstrate photovoltaic activity of electrodes composed of fluorine-doped tin oxide (FTO) conducting glass and a multilayer of trimeric photosystem I (PSI) from cyanobacterium Synechocystis sp. PCC 6803 yielding, at open circuit potential (OCP) of + 100 mV (vs. SHE), internal quantum efficiency of (0.37 ± 0.11)% and photocurrent density of up to (0.5 ± 0.1) µA/cm. The photocurrent measured for OCP is of cathodic nature meaning that preferentially the electrons are injected from the conducting layer of the FTO glass to the photooxidized PSI primary electron donor, P700, and further transferred from the photoreduced final electron acceptor of PSI, F, via ascorbate electrolyte to the counter electrode. This observation is consistent with preferential donor-side orientation of PSI on FTO imposed by applied electrodeposition. However, by applying high-positive bias (+ 620 mV) to the PSI-FTO electrode, exceeding redox midpoint potential of P700 (+ 450 mV), the photocurrent reverses its orientation and becomes anodic. This is explained by "switching off" the natural photoactivity of PSI particles (by the electrochemical oxidation of P700 to P700) and "switching on" the anodic photocurrent from PSI antenna Chls prone to photooxidation at high potentials. The efficient control of the P700 redox state (P700 or P700) by external bias applied to the PSI-FTO electrodes was evidenced by ultrafast transient absorption spectroscopy. The advantage of the presented system is its structural simplicity together with in situ-proven high intactness of the PSI particles.
我们展示了由掺氟氧化锡(FTO)导电玻璃和来自蓝藻集胞藻 PCC 6803 的三聚体光系统 I(PSI)多层组成的电极的光伏活性,在开路电位(OCP)为+100 mV(相对于 SHE)时,内部量子效率为(0.37±0.11)%,光电流密度高达(0.5±0.1)µA/cm。在 OCP 下测量的光电流是阴极性质的,这意味着电子优先从 FTO 玻璃的导电层注入到光氧化的 PSI 原初电子供体 P700,并进一步从 PSI 的光还原最终电子受体 F 通过抗坏血酸电解质转移到对电极。这一观察结果与施加的电沉积对 FTO 上 PSI 的优先供体侧取向一致。然而,通过向 PSI-FTO 电极施加高正偏压(+620 mV),超过 P700 的氧化还原中点电位(+450 mV),光电流的方向反转,呈阳极。这可以通过“关闭”PSI 颗粒的自然光活性(通过电化学氧化 P700 至 P700)和“开启”在高电势下易于光氧化的 PSI 天线 Chls 的阳极光电流来解释。通过施加到 PSI-FTO 电极的外部偏压对 P700 氧化还原状态(P700 或 P700)的有效控制得到了超快瞬态吸收光谱的证明。所提出的系统的优点是其结构简单,以及原位证明的 PSI 颗粒的高度完整性。