Amiri Mehran, Martin Nicolas P, Sadeghi Omid, Nyman May
Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.
Department of Physical Sciences, Linn-Benton Community College, Albany Oregon 97321, United States.
Inorg Chem. 2020 Mar 16;59(6):3471-3481. doi: 10.1021/acs.inorgchem.9b03646. Epub 2020 Feb 20.
Trivalent bismuth is a unique heavy p-block ion. It is highly insoluble in water, due to strong hydrolysis tendencies, and known for low toxicity. Its lone pair is structure-directing, providing framework materials with structural flexibility, leading to piezoelectric and multiferroic function. The flexibility it provides is also advantageous for dopants and vacancies, giving rise to conductivity, luminescence, color, and catalytic properties. We are exploiting Bi in a completely different way, as a knob to "tune" the solubility and stability of transition-metal oxo clusters. The lone pair allows capping and isolation of metastable cluster forms for solid-state and solution characterization. With controlled release of the bismuth (via bismuth oxyhalide metathesis), the metal oxo clusters can be retained in aqueous solution, and we can track their reaction pathways and conversion to related metal oxyhydroxides. Here we present isolation of a bismuth-stabilized Mn cluster, fully formulated [MnBiKO(CHCOO)(HO)(NO)] (). In addition to characterization by single-crystal X-ray diffraction, solution characterization in acetonitrile and acetonitrile-acetic acid by small-angle X-ray scattering (SAXS) and electrospray ionization mass spectrometry shows high stability and the tendency of to link into chains by bridging the bismuth (and potassium) caps with nitrate and acetate ligands. On the other hand, the dissolution of in water, with and without metathesis of the bismuth, leads to the precipitation of related oxyhydroxide phases, which we characterized by transmission electron microscopy (TEM), electron diffraction, and energy-dispersive spectroscopy, and the conversion pathway by SAXS. Without removal of bismuth, amorphous manganese/bismuth oxyhydroxides precipitate within a day. On the other hand, metathesis of BiOBr yields a solution containing soluble manganese oxyhydroxide prenucleation clusters that assemble and precipitate over 10 days. This allows tracking of the reaction pathway via SAXS. We observe one-dimensional growth of species, followed by the precipitation of nanocrystalline hollandite (identified by TEM). The hollandite is presumably templated by the K, originally in the crystalline lattice of . In this Forum Article that combines new results and prospective, we compare these results to prior studies in which we first introduced the use of capping Bi to stabilize reactive clusters, followed by destabilization to understand reaction pathways in synthesis and low-temperature geochemistry.
三价铋是一种独特的重p区离子。由于强烈的水解倾向,它在水中极难溶解,且毒性较低。其孤对电子具有结构导向作用,能为骨架材料提供结构灵活性,从而产生压电和多铁性功能。它所提供的灵活性对掺杂剂和空位也很有利,可带来导电性、发光性、颜色和催化性能。我们正以一种截然不同的方式利用铋,将其作为一个“旋钮”来“调节”过渡金属氧簇的溶解度和稳定性。孤对电子能对亚稳态簇形式进行封端和分离,以便进行固态和溶液表征。通过控制铋的释放(通过卤氧化铋复分解反应),金属氧簇可以保留在水溶液中,我们能够追踪它们的反应途径以及向相关金属羟基氧化物的转化过程。在此,我们展示了一种铋稳定的锰簇的分离,其完整化学式为[MnBiKO(CHCOO)(HO)(NO)]()。除了通过单晶X射线衍射进行表征外,在乙腈和乙腈 - 乙酸中通过小角X射线散射(SAXS)和电喷雾电离质谱进行的溶液表征表明,该簇具有高稳定性,并且有通过硝酸根和乙酸根配体桥接铋(和钾)封端而连接成链的趋势。另一方面,该簇在有水和无水条件下,无论铋是否发生复分解反应,在水中的溶解都会导致相关羟基氧化物相的沉淀,我们通过透射电子显微镜(TEM)、电子衍射和能量色散光谱对其进行了表征,并通过SAXS研究了转化途径。在不除去铋的情况下,无定形的锰/铋羟基氧化物在一天内就会沉淀。另一方面,BiOBr的复分解反应会产生一种含有可溶性锰羟基氧化物预成核簇的溶液,这些簇在10天内组装并沉淀。这使得我们能够通过SAXS追踪反应途径。我们观察到物种的一维生长,随后沉淀出纳米晶钡硬锰矿(通过TEM鉴定)。钡硬锰矿大概是以最初存在于该簇晶格中的钾为模板形成的。在这篇结合了新结果和前瞻性的论坛文章中,我们将这些结果与之前的研究进行了比较,在之前的研究中我们首次引入了使用封端铋来稳定反应性簇,随后使其不稳定以了解合成和低温地球化学中的反应途径。