Suppr超能文献

二维MS-EMC纳米器件模拟器中S/D隧穿模型的量子增强:非平衡格林函数比较及有效质量变化的影响

Quantum Enhancement of a S/D Tunneling Model in a 2D MS-EMC Nanodevice Simulator: NEGF Comparison and Impact of Effective Mass Variation.

作者信息

Medina-Bailon Cristina, Carrillo-Nunez Hamilton, Lee Jaehyun, Sampedro Carlos, Padilla Jose Luis, Donetti Luca, Georgiev Vihar, Gamiz Francisco, Asenov Asen

机构信息

Device Modelling Group, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK.

Nanoelectronics Research Group, Departamento de Electrónica y Tecnología de Computadores, Universidad de Granada, 18071 Granada, Spain.

出版信息

Micromachines (Basel). 2020 Feb 16;11(2):204. doi: 10.3390/mi11020204.

Abstract

As complementary metal-oxide-semiconductor (CMOS) transistors approach the nanometer scale, it has become mandatory to incorporate suitable quantum formalism into electron transport simulators. In this work, we present the quantum enhancement of a 2D Multi-Subband Ensemble Monte Carlo (MS-EMC) simulator, which includes a novel module for the direct Source-to-Drain tunneling (S/D tunneling), and its verification in the simulation of Double-Gate Silicon-On-Insulator (DGSOI) transistors and FinFETs. Compared to ballistic Non-Equilibrium Green's Function (NEGF) simulations, our results show accurate I D vs. V G S and subthreshold characteristics for both devices. Besides, we investigate the impact of the effective masses extracted Density Functional Theory (DFT) simulations, showing that they are the key of not only the general thermionic emission behavior of simulated devices, but also the electron probability of experiencing tunneling phenomena.

摘要

随着互补金属氧化物半导体(CMOS)晶体管接近纳米尺度,将合适的量子形式体系纳入电子输运模拟器已成为必然。在这项工作中,我们展示了二维多子带系综蒙特卡罗(MS-EMC)模拟器的量子增强,该模拟器包括一个用于直接源漏隧穿(S/D隧穿)的新颖模块,并在双栅绝缘体上硅(DGSOI)晶体管和鳍式场效应晶体管(FinFET)的模拟中对其进行了验证。与弹道非平衡格林函数(NEGF)模拟相比,我们的结果显示了这两种器件准确的漏极电流((I_D))与栅源电压((V_{GS}))关系以及亚阈值特性。此外,我们研究了从密度泛函理论(DFT)模拟中提取的有效质量的影响,表明它们不仅是模拟器件一般热电子发射行为的关键,也是电子经历隧穿现象概率的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/161e/7074633/24b063d34d19/micromachines-11-00204-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验