Ferretti Elena
Department of Civil, Environmental and Materials Engineering-DICAM, Alma Mater Studiorum Università di Bologna, 40136 Bologna, Italy.
Materials (Basel). 2020 Feb 16;13(4):880. doi: 10.3390/ma13040880.
This paper presents a new numerical method for multiscale modeling of composite materials. The new numerical model, called DECM, consists of a DEM (Discrete Element Method) approach of the Cell Method (CM) and combines the main features of both the DEM and the CM. In particular, it offers the same degree of detail as the CM, on the microscale, and manages the discrete elements individually such as the DEM-allowing finite displacements and rotations-on the macroscale. Moreover, the DECM is able to activate crack propagation until complete detachment and automatically recognizes new contacts. Unlike other DEM approaches for modeling failure mechanisms in continuous media, the DECM does not require prior knowledge of the failure position. Furthermore, the DECM solves the problems in the space domain directly. Therefore, it does not require any dynamic relaxation techniques to obtain the static solution. For the sake of example, the paper shows the results offered by the DECM for axial and shear loading of a composite two-dimensional domain with periodic round inclusions. The paper also offers some insights into how the inclusions modify the stress field in composite continua.
本文提出了一种用于复合材料多尺度建模的新数值方法。这种新的数值模型称为离散单元胞方法(DECM),它由单元法(CM)的离散单元法(DEM)方法组成,并结合了DEM和CM的主要特征。特别是,它在微观尺度上提供了与CM相同程度的细节,并在宏观尺度上像DEM一样单独管理离散单元,允许有限的位移和旋转。此外,DECM能够激活裂纹扩展直至完全分离,并能自动识别新的接触。与其他用于模拟连续介质破坏机制的DEM方法不同,DECM不需要预先知道破坏位置。此外,DECM直接在空间域中解决问题。因此,它不需要任何动态松弛技术来获得静态解。为了举例说明,本文展示了DECM对具有周期性圆形夹杂的二维复合材料域进行轴向和剪切加载时的结果。本文还对夹杂如何改变复合材料连续体中的应力场提供了一些见解。