Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45237.
Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267.
J Biol Chem. 2020 Apr 3;295(14):4631-4646. doi: 10.1074/jbc.RA119.012361. Epub 2020 Feb 20.
Increasing hepatic mitochondrial activity through pyruvate dehydrogenase and elevating enterohepatic bile acid recirculation are promising new approaches for metabolic disease therapy, but neither approach alone can completely ameliorate disease phenotype in high-fat diet-fed mice. This study showed that diet-induced hepatosteatosis, hyperlipidemia, and insulin resistance can be completely prevented in mice with liver-specific HCLS1-associated protein X-1 (HAX-1) inactivation. Mechanistically, we showed that HAX-1 interacts with inositol 1,4,5-trisphosphate receptor-1 (InsP3R1) in the liver, and its absence reduces InsP3R1 levels, thereby improving endoplasmic reticulum-mitochondria calcium homeostasis to prevent excess calcium overload and mitochondrial dysfunction. As a result, HAX-1 ablation activates pyruvate dehydrogenase and increases mitochondria utilization of glucose and fatty acids to prevent hepatosteatosis, hyperlipidemia, and insulin resistance. In contrast to the reduction of InsP3R1 levels, hepatic HAX-1 deficiency increases bile salt exporter protein levels, thereby promoting enterohepatic bile acid recirculation, leading to activation of bile acid-responsive genes in the intestinal ileum to augment insulin sensitivity and of cholesterol transport genes in the liver to suppress hyperlipidemia. The dual mechanisms of increased mitochondrial respiration and enterohepatic bile acid recirculation due to improvement of endoplasmic reticulum-mitochondria calcium homeostasis with hepatic HAX-1 inactivation suggest that this may be a potential therapeutic target for metabolic disease intervention.
通过丙酮酸脱氢酶增加肝线粒体活性和提高肠肝胆汁酸再循环是代谢性疾病治疗的有前途的新方法,但这两种方法都不能完全改善高脂肪饮食喂养的小鼠的疾病表型。本研究表明,通过肝特异性 HCLS1 相关蛋白 X-1(HAX-1)失活,可完全预防饮食诱导的肝脂肪变性、高脂血症和胰岛素抵抗。从机制上讲,我们表明 HAX-1 在肝脏中与肌醇 1,4,5-三磷酸受体 1(InsP3R1)相互作用,其缺失会降低 InsP3R1 水平,从而改善内质网-线粒体钙稳态,防止钙超载和线粒体功能障碍。结果,HAX-1 缺失激活丙酮酸脱氢酶并增加线粒体对葡萄糖和脂肪酸的利用,以预防肝脂肪变性、高脂血症和胰岛素抵抗。与 InsP3R1 水平降低相反,肝 HAX-1 缺乏会增加胆汁盐输出蛋白水平,从而促进肠肝胆汁酸再循环,导致回肠中胆汁酸反应基因激活,增强胰岛素敏感性,肝脏中胆固醇转运基因激活,抑制高脂血症。由于肝 HAX-1 失活改善内质网-线粒体钙稳态,导致线粒体呼吸和肠肝胆汁酸再循环增加的双重机制表明,这可能是代谢性疾病干预的潜在治疗靶点。