Institute of Physiology and NCCR Kidney.CH, University of Zurich, 8057, Zurich, Switzerland.
Division of Metabolism and Children's Research Center, University Children's Hospital, 8032, Zurich, Switzerland.
Nat Commun. 2020 Feb 20;11(1):970. doi: 10.1038/s41467-020-14729-8.
Deregulation of mitochondrial network in terminally differentiated cells contributes to a broad spectrum of disorders. Methylmalonic acidemia (MMA) is one of the most common inherited metabolic disorders, due to deficiency of the mitochondrial methylmalonyl-coenzyme A mutase (MMUT). How MMUT deficiency triggers cell damage remains unknown, preventing the development of disease-modifying therapies. Here we combine genetic and pharmacological approaches to demonstrate that MMUT deficiency induces metabolic and mitochondrial alterations that are exacerbated by anomalies in PINK1/Parkin-mediated mitophagy, causing the accumulation of dysfunctional mitochondria that trigger epithelial stress and ultimately cell damage. Using drug-disease network perturbation modelling, we predict targetable pathways, whose modulation repairs mitochondrial dysfunctions in patient-derived cells and alleviate phenotype changes in mmut-deficient zebrafish. These results suggest a link between primary MMUT deficiency, diseased mitochondria, mitophagy dysfunction and epithelial stress, and provide potential therapeutic perspectives for MMA.
线粒体网络在终末分化细胞中的失调导致了广泛的疾病谱。甲基丙二酸血症(MMA)是最常见的遗传性代谢疾病之一,由于线粒体甲基丙二酰辅酶 A 变位酶(MMUT)的缺乏。MMUT 缺乏如何引发细胞损伤仍然未知,这阻碍了疾病修饰疗法的发展。在这里,我们结合遗传和药理学方法证明,MMUT 缺乏会诱导代谢和线粒体改变,而 PINK1/Parkin 介导的线粒体自噬异常会加剧这些改变,导致功能失调的线粒体积累,从而引发上皮细胞应激,最终导致细胞损伤。使用药物疾病网络扰动建模,我们预测了可靶向的途径,其调节可修复患者来源细胞中的线粒体功能障碍,并减轻 mmut 缺陷斑马鱼的表型变化。这些结果表明,原发性 MMUT 缺乏、病变线粒体、线粒体自噬功能障碍和上皮细胞应激之间存在联系,并为 MMA 提供了潜在的治疗前景。