Holm Darryl D, Náraigh Lennon Ó, Tronci Cesare
Department of Mathematics, Imperial College London, London SW7 2AZ, UK.
School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland.
Proc Math Phys Eng Sci. 2020 Jan;476(2233):20190222. doi: 10.1098/rspa.2019.0222. Epub 2020 Jan 8.
This paper exploits the theory of geometric gradient flows to introduce an alternative regularization of the thin-film equation valid in the case of large-scale droplet spreading-the geometric diffuse-interface method. The method possesses some advantages when compared with the existing models of droplet spreading, namely the slip model, the precursor-film method and the diffuse-interface model. These advantages are discussed and a case is made for using the geometric diffuse-interface method for the purpose of numerical simulations. The mathematical solutions of the geometric diffuse interface method are explored via such numerical simulations for the simple and well-studied case of large-scale droplet spreading for a perfectly wetting fluid-we demonstrate that the new method reproduces Tanner's Law of droplet spreading via a simple and robust computational method, at a low computational cost. We discuss potential avenues for extending the method beyond the simple case of perfectly wetting fluids.
本文利用几何梯度流理论,引入了一种在大规模液滴铺展情况下有效的薄膜方程的替代正则化方法——几何扩散界面方法。与现有的液滴铺展模型(即滑移模型、前驱膜方法和扩散界面模型)相比,该方法具有一些优势。本文讨论了这些优势,并提出了使用几何扩散界面方法进行数值模拟的理由。通过对完全润湿流体大规模液滴铺展这一简单且研究充分的案例进行数值模拟,探索了几何扩散界面方法的数学解——我们证明,新方法通过一种简单且稳健的计算方法,以较低的计算成本再现了坦纳液滴铺展定律。我们还讨论了将该方法扩展到完全润湿流体简单情况之外的潜在途径。