Suppr超能文献

一种用于液滴铺展的几何扩散界面方法。

A geometric diffuse-interface method for droplet spreading.

作者信息

Holm Darryl D, Náraigh Lennon Ó, Tronci Cesare

机构信息

Department of Mathematics, Imperial College London, London SW7 2AZ, UK.

School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland.

出版信息

Proc Math Phys Eng Sci. 2020 Jan;476(2233):20190222. doi: 10.1098/rspa.2019.0222. Epub 2020 Jan 8.

Abstract

This paper exploits the theory of geometric gradient flows to introduce an alternative regularization of the thin-film equation valid in the case of large-scale droplet spreading-the geometric diffuse-interface method. The method possesses some advantages when compared with the existing models of droplet spreading, namely the slip model, the precursor-film method and the diffuse-interface model. These advantages are discussed and a case is made for using the geometric diffuse-interface method for the purpose of numerical simulations. The mathematical solutions of the geometric diffuse interface method are explored via such numerical simulations for the simple and well-studied case of large-scale droplet spreading for a perfectly wetting fluid-we demonstrate that the new method reproduces Tanner's Law of droplet spreading via a simple and robust computational method, at a low computational cost. We discuss potential avenues for extending the method beyond the simple case of perfectly wetting fluids.

摘要

本文利用几何梯度流理论,引入了一种在大规模液滴铺展情况下有效的薄膜方程的替代正则化方法——几何扩散界面方法。与现有的液滴铺展模型(即滑移模型、前驱膜方法和扩散界面模型)相比,该方法具有一些优势。本文讨论了这些优势,并提出了使用几何扩散界面方法进行数值模拟的理由。通过对完全润湿流体大规模液滴铺展这一简单且研究充分的案例进行数值模拟,探索了几何扩散界面方法的数学解——我们证明,新方法通过一种简单且稳健的计算方法,以较低的计算成本再现了坦纳液滴铺展定律。我们还讨论了将该方法扩展到完全润湿流体简单情况之外的潜在途径。

相似文献

1
A geometric diffuse-interface method for droplet spreading.
Proc Math Phys Eng Sci. 2020 Jan;476(2233):20190222. doi: 10.1098/rspa.2019.0222. Epub 2020 Jan 8.
2
A mathematical model and mesh-free numerical method for contact-line motion in lubrication theory.
Environ Fluid Mech (Dordr). 2022;22(2-3):301-336. doi: 10.1007/s10652-021-09827-0. Epub 2022 Jan 19.
3
Wetting condition in diffuse interface simulations of contact line motion.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 2):046708. doi: 10.1103/PhysRevE.75.046708. Epub 2007 Apr 27.
4
Surfactant solutions and porous substrates: spreading and imbibition.
Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27. doi: 10.1016/j.cis.2004.07.007.
5
Dynamic wetting and spreading and the role of topography.
J Phys Condens Matter. 2009 Nov 18;21(46):464122. doi: 10.1088/0953-8984/21/46/464122. Epub 2009 Oct 29.
6
Beyond Tanner's law: crossover between spreading regimes of a viscous droplet on an identical film.
Phys Rev Lett. 2012 Oct 12;109(15):154501. doi: 10.1103/PhysRevLett.109.154501. Epub 2012 Oct 9.
7
Obstructed breakup of slender drops in a microfluidic T junction.
Phys Rev Lett. 2012 Jun 29;108(26):264502. doi: 10.1103/PhysRevLett.108.264502. Epub 2012 Jun 26.
8
A thin-film model for droplet spreading on soft solid substrates.
Soft Matter. 2020 Sep 16;16(35):8284-8298. doi: 10.1039/d0sm00643b.
9
Wetting dynamics on superhydrophilic surfaces prepared by photonic microfolding.
Langmuir. 2014 Mar 25;30(11):3127-31. doi: 10.1021/la500227w. Epub 2014 Mar 14.
10
Spreading and retraction as a function of drop size.
Adv Colloid Interface Sci. 2010 Dec 15;161(1-2):61-76. doi: 10.1016/j.cis.2010.08.003. Epub 2010 Aug 11.

引用本文的文献

1
A mathematical model and mesh-free numerical method for contact-line motion in lubrication theory.
Environ Fluid Mech (Dordr). 2022;22(2-3):301-336. doi: 10.1007/s10652-021-09827-0. Epub 2022 Jan 19.

本文引用的文献

1
Gradient dynamics description for films of mixtures and suspensions: dewetting triggered by coupled film height and concentration fluctuations.
Phys Rev Lett. 2013 Sep 13;111(11):117801. doi: 10.1103/PhysRevLett.111.117801. Epub 2013 Sep 10.
2
On the moving contact line singularity: asymptotics of a diffuse-interface model.
Eur Phys J E Soft Matter. 2013 Mar;36(3):26. doi: 10.1140/epje/i2013-13026-y. Epub 2013 Mar 22.
3
Emergent singular solutions of nonlocal density-magnetization equations in one dimension.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 2):036211. doi: 10.1103/PhysRevE.77.036211. Epub 2008 Mar 18.
4
Wetting condition in diffuse interface simulations of contact line motion.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 2):046708. doi: 10.1103/PhysRevE.75.046708. Epub 2007 Apr 27.
5
Aggregation of finite-size particles with variable mobility.
Phys Rev Lett. 2005 Nov 25;95(22):226106. doi: 10.1103/PhysRevLett.95.226106. Epub 2005 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验