Vargas-Asencio Jose A, Perry Keith L
Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States.
Front Plant Sci. 2020 Jan 29;10:1710. doi: 10.3389/fpls.2019.01710. eCollection 2019.
Gene regulation involves the orchestrated action of multiple regulators to fine-tune the expression of genes. Hierarchical interactions and co-regulation among regulators are commonly observed in biological systems, leading to complex regulatory networks. Small RNA (sRNAs) have been shown to be important regulators of gene expression due to their involvement in multiple cellular processes. In plants, microRNA (miRNAs) and phased small interfering RNAs (phasiRNAs) correspond to two well-characterized types of sRNAs involved in the regulation of posttranscriptional gene expression, although information about their targets and interactions with other gene expression regulators is limited. We describe an extended sRNA-mediated regulatory network in that provides a reference frame to understand sRNA biogenesis and activity at the genome-wide level. This regulatory network combines a comprehensive evaluation of phasiRNA production and sRNA targets supported by degradome data. The network includes 17% of genes in the genome, representing ~50% annotated gene ontology (GO) functional categories. Approximately 14% of genes with GO annotations corresponding to regulation of gene expression were found to be under sRNA control. The unbiased bioinformatic approach used to produce the network was able to detect 107 loci (regions of phasiRNA production), 5,047 active phasiRNAs (70% of which were non-canonical), and reconstruct 17 regulatory modules resulting from complex regulatory interactions between different sRNA-regulatory pathways. Known regulatory modules like miR173-TAS-PPR/TPR and miR390-TAS3-ARF/F-box were faithfully reconstructed and expanded, illustrating the accuracy and sensitivity of the methods and providing confidence for the validity of findings of previously unrecognized modules. The network presented here includes a 2X increase in the number of identified loci, a large complement (~70%) of non-canonical phasiRNAs, and the most comprehensive evaluation of sRNA cleavage activity in to date. Structural analysis showed similarities to networks of other biological systems and demonstrated connectivity between phasiRNA regulatory modules with extensive co-regulation of transcripts by miRNAs and phasiRNAs. The described regulatory network provides a reference that will facilitate global analyses of individual plant regulatory programs such as those that control homeostasis, development, and responses to biotic and abiotic environmental changes.
基因调控涉及多个调控因子的协同作用,以精确调节基因的表达。在生物系统中,调控因子之间的层级相互作用和共同调控普遍存在,从而形成复杂的调控网络。小RNA(sRNA)由于参与多种细胞过程,已被证明是基因表达的重要调控因子。在植物中,微小RNA(miRNA)和阶段性小干扰RNA(phasiRNA)是两种特征明确的sRNA类型,参与转录后基因表达的调控,尽管关于它们的靶标以及与其他基因表达调控因子相互作用的信息有限。我们描述了一个扩展的sRNA介导的调控网络,该网络为在全基因组水平上理解sRNA的生物合成和活性提供了一个参考框架。这个调控网络结合了对phasiRNA产生和由降解组数据支持的sRNA靶标的综合评估。该网络涵盖了基因组中约17%的基因,代表了约50%的注释基因本体(GO)功能类别。发现约14%具有与基因表达调控相对应的GO注释的基因受sRNA控制。用于构建该网络的无偏生物信息学方法能够检测到107个phasiRNA产生位点(区域)、5047个活性phasiRNA(其中约70%是非典型的),并重建了由不同sRNA调控途径之间复杂调控相互作用产生的17个调控模块。像miR173-TAS-PPR/TPR和miR390-TAS3-ARF/F-box这样已知的调控模块被忠实地重建和扩展,说明了这些方法的准确性和灵敏度,并为先前未识别模块的研究结果的有效性提供了信心。这里展示的网络所识别的位点数量增加了两倍,包含大量(约70%)的非典型phasiRNA,并且是迄今为止对植物中sRNA切割活性最全面的评估。结构分析显示与其他生物系统的网络有相似之处,并证明了phasiRNA调控模块之间的连通性以及miRNA和phasiRNA对转录本的广泛共同调控。所描述的调控网络提供了一个参考,将有助于对单个植物调控程序进行全局分析,例如那些控制体内平衡、发育以及对生物和非生物环境变化响应的程序。