Xia Rui, Xu Jing, Arikit Siwaret, Meyers Blake C
Department of Plant & Soil Sciences, University of Delaware Delaware Biotechnology Institute, University of Delaware.
Delaware Biotechnology Institute, University of Delaware Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen and Rice Science Center, Kasetsart University, Nakhon Pathom, Thailand.
Mol Biol Evol. 2015 Nov;32(11):2905-18. doi: 10.1093/molbev/msv164. Epub 2015 Aug 28.
In eudicot plants, the miR482/miR2118 superfamily regulates and instigates the production of phased secondary small interfering RNAs (siRNAs) from NB-LRR (nucleotide binding leucine-rich repeat) genes that encode disease resistance proteins. In grasses, this miRNA family triggers siRNA production specifically in reproductive tissues from long noncoding RNAs. To understand this functional divergence, we examined the small RNA population in the ancient gymnosperm Norway spruce (Picea abies). As many as 41 miRNA families in spruce were found to trigger phasiRNA (phased, secondary siRNAs) production from diverse PHAS loci, with a remarkable 19 miRNA families capable of targeting over 750 NB-LRR genes to generate phasiRNAs. miR482/miR2118, encoded in spruce by at least 24 precursor loci, targets not only NB-LRR genes to trigger phasiRNA production (as in eudicots) but also noncoding PHAS loci, generating phasiRNAs preferentially in male or female cones, reminiscent of its role in the grasses. These data suggest a dual function of miR482/miR2118 present in gymnosperms that was selectively yet divergently retained in flowering plants. A few MIR482/MIR2118 precursors possess an extremely long stem-loop structure, one arm of which shows significant sequence similarity to spruce NB-LRR genes, suggestive of an evolutionary origin from NB-LRR genes through gene duplication. We also characterized an expanded miR390-TAS3 (TRANS-ACTING SIRNA GENE 3)-ARF (AUXIN RESPONSIVE FACTOR) pathway, comprising 18 TAS3 genes of diverse features. Finally, we annotated spruce miRNAs and their targets. Taken together, these data expand our understanding of phasiRNA network in plants and the evolution of plant miRNAs, particularly miR482/miR2118 and its functional diversification.
在真双子叶植物中,miR482/miR2118 超家族调控并促使从编码抗病蛋白的 NB-LRR(核苷酸结合富含亮氨酸重复序列)基因产生阶段性次级小干扰 RNA(siRNA)。在禾本科植物中,这个 miRNA 家族专门从长链非编码 RNA 触发生殖组织中的 siRNA 产生。为了解这种功能差异,我们研究了古老裸子植物挪威云杉(Picea abies)中的小 RNA 群体。我们发现云杉中多达 41 个 miRNA 家族能从不同的 PHAS 位点触发 phasiRNA(阶段性次级 siRNA)产生,其中有 19 个 miRNA 家族能够靶向 750 多个 NB-LRR 基因以产生 phasiRNA。云杉中由至少 24 个前体基因座编码的 miR482/miR2118,不仅靶向 NB-LRR 基因以触发 phasiRNA 产生(如在真双子叶植物中),还靶向非编码 PHAS 位点,优先在雄球果或雌球果中产生 phasiRNA,这让人联想到它在禾本科植物中的作用。这些数据表明裸子植物中存在的 miR482/miR2118 具有双重功能,在开花植物中被选择性地但又有差异地保留下来。一些 MIR482/MIR2118 前体具有极长的茎环结构,其一个臂与云杉 NB-LRR 基因显示出显著的序列相似性,这表明其通过基因复制从 NB-LRR 基因进化而来。我们还对一个扩展的 miR390-TAS3(反式作用 siRNA 基因 3)-ARF(生长素响应因子)途径进行了表征,该途径包含 18 个具有不同特征的 TAS3 基因。最后,我们注释了云杉 miRNA 及其靶标。综上所述,这些数据扩展了我们对植物中 phasiRNA 网络以及植物 miRNA 进化的理解,特别是 miR482/miR2118 及其功能多样化。