School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, 97331 USA.
Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA.
Environ Sci Process Impacts. 2020 Mar 27;22(3):771-791. doi: 10.1039/c9em00607a.
Rhodococcus rhodochrous ATCC 21198 (strain ATCC 21198) was successfully co-encapsulated in gellan gum beads with orthosilicates as slow release compounds (SRCs) to support aerobic cometabolism of a mixture of 1,1,1-trichloroethane (1,1,1-TCA), cis-1,2-dichloroethene (cis-DCE), and 1,4-dioxane (1,4-D) at aqueous concentrations ranging from 250 to 1000 μg L-1. Oxygen (O2) consumption and carbon dioxide (CO2) production showed the co-encapsulated cells utilized the alcohols that were released from the co-encapsulated SRCs. Two model SRCs, tetrabutylorthosilicate (TBOS) and tetra-s-butylorthosilicate (T2BOS), which hydrolyze to produce 1- and 2-butanol, respectively, were encapsulated in gellan gum (GG) at mass loadings as high as 10% (w/w), along with strain ATCC 21198. In the GG encapsulated beads, TBOS hydrolyzed 26 times faster than T2BOS and rates were ∼4 times higher in suspension than when encapsulated. In biologically active reactors, the co-encapsulated strain ATCC 21198 effectively utilized the SRC hydrolysis products (1- and 2-butanol) and cometabolized repeated additions of a mixture of 1,1,1-TCA, cis-DCE, and 1,4-D for over 300 days. The transformation followed pseudo-first-order kinetics. Vinyl chloride (VC) and 1,1-dichloroethene (1,1-DCE) were also transformed in the reactors after 250 days. In the long-term treatment, the batch reactors with co-encapsulated T2BOS GG beads achieved similar transformation rates, but at much lower O2 consumption rates than those with TBOS. The results demonstrate that the co-encapsulation technology can be a passive method for the cometabolic treatment of dilute groundwater plumes.
罗得西亚玫瑰球菌 ATCC 21198(菌株 ATCC 21198)与正硅酸盐一起成功包埋在结冷胶珠中,作为缓慢释放化合物(SRCs),以支持在水浓度为 250 至 1000μg L-1 的范围内的混合物的需氧共代谢。1,1,1-三氯乙烷(1,1,1-TCA)、顺式-1,2-二氯乙烯(cis-DCE)和 1,4-二恶烷(1,4-D)。氧气(O2)消耗和二氧化碳(CO2)生产表明,共包封的细胞利用了从共包封的 SRC 中释放的醇。两种模型 SRCs,四丁基正硅酸盐(TBOS)和四-s-丁基正硅酸盐(T2BOS),分别水解生成 1-丁醇和 2-丁醇,在高达 10%(w/w)的质量负载下与菌株 ATCC 21198 一起包埋在结冷胶(GG)中。在 GG 包封珠中,TBOS 的水解速度比 T2BOS 快 26 倍,在悬浮液中的速度比包封时高 4 倍。在生物活性反应器中,共包封的 ATCC 21198 菌株有效地利用了 SRC 水解产物(1-丁醇和 2-丁醇),并在 300 多天内共代谢重复添加的 1,1,1-TCA、cis-DCE 和 1,4-D 混合物。转化遵循准一级动力学。氯乙烯(VC)和 1,1-二氯乙烯(1,1-DCE)也在 250 天后在反应器中转化。在长期处理中,共包封 T2BOS GG 珠的分批式反应器达到了相似的转化速率,但 O2 消耗率比 TBOS 低得多。结果表明,共包封技术可以是一种用于稀地下水羽流的共代谢处理的被动方法。