Suppr超能文献

靶向诱导一个沉默的真菌基因簇,该基因簇编码细菌特异性萌发抑制剂烟曲霉萌发素。

Targeted induction of a silent fungal gene cluster encoding the bacteria-specific germination inhibitor fumigermin.

作者信息

Stroe Maria Cristina, Netzker Tina, Scherlach Kirstin, Krüger Thomas, Hertweck Christian, Valiante Vito, Brakhage Axel A

机构信息

Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany.

Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.

出版信息

Elife. 2020 Feb 21;9:e52541. doi: 10.7554/eLife.52541.

Abstract

Microorganisms produce numerous secondary metabolites (SMs) with various biological activities. Many of their encoding gene clusters are silent under standard laboratory conditions because for their activation they need the ecological context, such as the presence of other microorganisms. The true ecological function of most SMs remains obscure, but understanding of both the activation of silent gene clusters and the ecological function of the produced compounds is of importance to reveal functional interactions in microbiomes. Here, we report the identification of an as-yet uncharacterized silent gene cluster of the fungus , which is activated by the bacterium during the bacterial-fungal interaction. The resulting natural product is the novel fungal metabolite fumigermin, the biosynthesis of which requires the polyketide synthase FgnA. Fumigermin inhibits germination of spores of the inducing and thus helps the fungus to defend resources in the shared habitat against a bacterial competitor.

摘要

微生物产生许多具有各种生物活性的次级代谢产物(SMs)。它们的许多编码基因簇在标准实验室条件下是沉默的,因为它们的激活需要生态环境,例如其他微生物的存在。大多数SMs的真正生态功能仍然不清楚,但了解沉默基因簇的激活以及所产生化合物的生态功能对于揭示微生物群落中的功能相互作用很重要。在这里,我们报告了一种尚未表征的真菌沉默基因簇的鉴定,该基因簇在细菌与真菌的相互作用过程中被细菌激活。产生的天然产物是新型真菌代谢物烟曲霉素,其生物合成需要聚酮合酶FgnA。烟曲霉素抑制诱导菌的孢子萌发,从而帮助真菌在共享栖息地中抵御细菌竞争者来保护资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eba/7034978/adc422e11187/elife-52541-fig1.jpg

相似文献

2
Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus.
Chembiochem. 2013 May 27;14(8):938-42. doi: 10.1002/cbic.201300070. Epub 2013 May 6.
3
Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation.
Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14282-7. doi: 10.1073/pnas.1103523108. Epub 2011 Aug 8.
4
Antibacterial diphenyl ether production induced by co-culture of Aspergillus nidulans and Aspergillus fumigatus.
Appl Microbiol Biotechnol. 2022 Jun;106(11):4169-4185. doi: 10.1007/s00253-022-11964-5. Epub 2022 May 21.
6
Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14558-63. doi: 10.1073/pnas.0901870106. Epub 2009 Aug 6.
7
Fungal Isocyanide Synthases and Xanthocillin Biosynthesis in Aspergillus fumigatus.
mBio. 2018 May 29;9(3):e00785-18. doi: 10.1128/mBio.00785-18.
8
Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters.
Front Microbiol. 2015 Apr 20;6:299. doi: 10.3389/fmicb.2015.00299. eCollection 2015.
9
10
Redundant synthesis of a conidial polyketide by two distinct secondary metabolite clusters in Aspergillus fumigatus.
Environ Microbiol. 2016 Jan;18(1):246-59. doi: 10.1111/1462-2920.13007. Epub 2015 Sep 3.

引用本文的文献

2
Identification of a fungal antibacterial endopeptidase that cleaves peptidoglycan.
EMBO Rep. 2025 Aug;26(15):3889-3916. doi: 10.1038/s44319-025-00508-3. Epub 2025 Jul 4.
3
Giant transposons promote strain heterogeneity in a major fungal pathogen.
mBio. 2025 Jun 11;16(6):e0109225. doi: 10.1128/mbio.01092-25. Epub 2025 May 12.
4
: Pioneers of chemical creativity - Techniques and strategies to uncover fungal chemistry.
IMA Fungus. 2025 Mar 7;16:e142462. doi: 10.3897/imafungus.16.142462. eCollection 2025.
6
Recent developments in research: diversity, drugs, and disease.
Microbiol Mol Biol Rev. 2025 Mar 27;89(1):e0001123. doi: 10.1128/mmbr.00011-23. Epub 2025 Feb 10.
9
Giant transposons promote strain heterogeneity in a major fungal pathogen.
bioRxiv. 2024 Oct 8:2024.06.28.601215. doi: 10.1101/2024.06.28.601215.

本文引用的文献

1
Mycobacterium smegmatis alters the production of secondary metabolites by marine-derived Aspergillus niger.
J Nat Med. 2020 Jan;74(1):76-82. doi: 10.1007/s11418-019-01345-0. Epub 2019 Jul 18.
2
Fungal secondary metabolism: regulation, function and drug discovery.
Nat Rev Microbiol. 2019 Mar;17(3):167-180. doi: 10.1038/s41579-018-0121-1.
5
How fungi defend themselves against microbial competitors and animal predators.
PLoS Pathog. 2018 Sep 6;14(9):e1007184. doi: 10.1371/journal.ppat.1007184. eCollection 2018 Sep.
6
Genome-Based Taxonomic Classification of the Phylum .
Front Microbiol. 2018 Aug 22;9:2007. doi: 10.3389/fmicb.2018.02007. eCollection 2018.
7
Inter-Kingdom beach warfare: Microbial chemical communication activates natural chemical defences.
ISME J. 2019 Jan;13(1):147-158. doi: 10.1038/s41396-018-0265-z. Epub 2018 Aug 16.
8
Facile assembly and fluorescence-based screening method for heterologous expression of biosynthetic pathways in fungi.
Metab Eng. 2018 Jul;48:44-51. doi: 10.1016/j.ymben.2018.05.014. Epub 2018 May 26.
9
Microbial interactions trigger the production of antibiotics.
Curr Opin Microbiol. 2018 Oct;45:117-123. doi: 10.1016/j.mib.2018.04.002. Epub 2018 Apr 24.
10
Secondary Metabolites Produced during the Germination of .
Front Microbiol. 2017 Dec 13;8:2495. doi: 10.3389/fmicb.2017.02495. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验