Suppr超能文献

真菌介导的隐式硒循环与锰生物地球化学有关。

A Fungal-Mediated Cryptic Selenium Cycle Linked to Manganese Biogeochemistry.

机构信息

Department of Earth and Environmental Sciences, University of Minnesota - Twin Cities, Minneapolis, Minnesota 55455, United States.

BioTechnology Institute, University of Minnesota - Twin Cities, St. Paul, Minnesota 55108, United States.

出版信息

Environ Sci Technol. 2020 Mar 17;54(6):3570-3580. doi: 10.1021/acs.est.9b06022. Epub 2020 Mar 5.

Abstract

Selenium (Se) redox chemistry is a determining factor for its environmental toxicity and mobility. Currently, millions of people are impacted by Se deficiency or toxicity, and in geologic history, several mass extinctions have been linked to extreme Se deficiency. Importantly, microbial activity and interactions with other biogeochemically active elements can drastically alter Se oxidation state and form, impacting its bioavailability. Here, we use wet geochemistry, spectroscopy, and electron microscopy to identify a cryptic, or hidden, Se cycle involving the reoxidation of biogenic volatile Se compounds in the presence of biogenic manganese [Mn(III, IV)] oxides and oxyhydroxides (hereafter referred to as "Mn oxides"). Using two common environmental Ascomycete fungi, and sp., we observed that aerobic Se(IV and VI) bioreduction to Se(0) and Se(-II) occurs simultaneously alongside the opposite redox biomineralization process of mycogenic Mn(II) oxidation to Mn oxides. Selenium bioreduction produced stable Se(0) nanoparticles and organoselenium compounds. However, mycogenic Mn oxides rapidly oxidized volatile Se products, recycling these compounds back to soluble forms. Given their abundance in natural systems, biogenic Mn oxides likely play an important role mediating Se biogeochemistry. Elucidating this cryptic Se cycle is essential for understanding and predicting Se behavior in diverse environmental systems.

摘要

硒(Se)的氧化还原化学是其环境毒性和迁移性的决定因素。目前,数百万人受到硒缺乏或毒性的影响,在地质历史上,有几次大规模灭绝与极端硒缺乏有关。重要的是,微生物活性和与其他生物地球化学活性元素的相互作用可以极大地改变硒的氧化态和形态,从而影响其生物利用度。在这里,我们使用湿化学、光谱和电子显微镜来鉴定一个隐藏的硒循环,该循环涉及在生物成因的锰[Mn(III,IV)]氧化物和氢氧化物(以下简称“Mn 氧化物”)存在下,生物成因挥发性硒化合物的再氧化。使用两种常见的环境曲霉真菌 和 ,我们观察到有氧条件下 Se(IV 和 VI)到 Se(0)和 Se(-II)的生物还原同时伴随着相反的生物氧化还原过程,即真菌源性 Mn(II)氧化为 Mn 氧化物。硒的生物还原产生了稳定的 Se(0)纳米颗粒和有机硒化合物。然而,真菌源性 Mn 氧化物会迅速氧化挥发性硒产物,将这些化合物循环回可溶性形式。鉴于它们在自然系统中的丰富性,生物成因的 Mn 氧化物可能在调节硒生物地球化学方面发挥着重要作用。阐明这个隐藏的硒循环对于理解和预测不同环境系统中的硒行为至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验