Simon Jorge, Nuñez-García Maitane, Fernández-Tussy Pablo, Barbier-Torres Lucía, Fernández-Ramos David, Gómez-Santos Beatriz, Buqué Xabier, Lopitz-Otsoa Fernando, Goikoetxea-Usandizaga Naroa, Serrano-Macia Marina, Rodriguez-Agudo Rubén, Bizkarguenaga Maider, Zubiete-Franco Imanol, Gutiérrez-de Juan Virginia, Cabrera Diana, Alonso Cristina, Iruzubieta Paula, Romero-Gomez Manuel, van Liempd Sebastiaan, Castro Azucena, Nogueiras Ruben, Varela-Rey Marta, Falcón-Pérez Juan Manuel, Villa Erica, Crespo Javier, Lu Shelly C, Mato Jose M, Aspichueta Patricia, Delgado Teresa C, Martínez-Chantar María Luz
Liver Disease Laboratory, Liver Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain.
Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain.
Cell Metab. 2020 Mar 3;31(3):605-622.e10. doi: 10.1016/j.cmet.2020.01.013. Epub 2020 Feb 21.
Non-alcoholic steatohepatitis (NASH) is characterized by the accumulation of hepatic fat in an inflammatory/fibrotic background. Herein, we show that the hepatic high-activity glutaminase 1 isoform (GLS1) is overexpressed in NASH. Importantly, GLS1 inhibition reduces lipid content in choline and/or methionine deprivation-induced steatotic mouse primary hepatocytes, in human hepatocyte cell lines, and in NASH mouse livers. We suggest that under these circumstances, defective glutamine fueling of anaplerotic mitochondrial metabolism and concomitant reduction of oxidative stress promotes a reprogramming of serine metabolism, wherein serine is shifted from the generation of the antioxidant glutathione and channeled to provide one-carbon units to regenerate the methionine cycle. The restored methionine cycle can induce phosphatidylcholine synthesis from the phosphatidylethanolamine N-methyltransferase-mediated and CDP-choline pathways as well as by base-exchange reactions between phospholipids, thereby restoring hepatic phosphatidylcholine content and very-low-density lipoprotein export. Overall, we provide evidence that hepatic GLS1 targeting is a valuable therapeutic approach in NASH.
非酒精性脂肪性肝炎(NASH)的特征是在炎症/纤维化背景下肝脏脂肪堆积。在此,我们表明肝脏高活性谷氨酰胺酶1同工型(GLS1)在NASH中过度表达。重要的是,抑制GLS1可降低胆碱和/或蛋氨酸缺乏诱导的脂肪变性小鼠原代肝细胞、人肝细胞系以及NASH小鼠肝脏中的脂质含量。我们认为,在这些情况下,回补性线粒体代谢的谷氨酰胺供能缺陷以及氧化应激的相应降低促进了丝氨酸代谢的重编程,其中丝氨酸从抗氧化剂谷胱甘肽的生成中转移出来,并被引导提供一碳单位以再生蛋氨酸循环。恢复的蛋氨酸循环可通过磷脂酰乙醇胺N-甲基转移酶介导的途径和CDP-胆碱途径以及磷脂之间的碱基交换反应诱导磷脂酰胆碱的合成,从而恢复肝脏磷脂酰胆碱含量和极低密度脂蛋白输出。总体而言,我们提供的证据表明,靶向肝脏GLS1是NASH中一种有价值的治疗方法。